
Oracle® Application Development Framework
Tutorial
10g Release 3 (10.1.3)

January, 2006

Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Copyright © 2006, Oracle. All rights reserved.

Primary Authors: Jeff Gallus, Gary Williams, Kate Heap

Contributors: Lynn Munsinger, Duncan Mills, Frank Nimphius

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Preface i

Preface

This preface outlines the contents and audience for the Oracle Application Development
Framework Tutorial 10g Release 3 (10.1.3).

The preface contains the following sections:

 Intended Audience

 Structure

 Related Documents

Intended Audience

ii Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Intended Audience
This tutorial is for J2EE developers who use Oracle Application Development Framework (ADF)
to build Web applications.

Structure
The tutorial consists of the following chapters:

Chapter 1: “Getting Started”

This chapter describes the Service Request scenario and installation of the schema.

Chapter 2: “Developing the Data Model”

This chapter describes how to build the data model for your application by using Oracle TopLink
and Oracle ADF.

Chapter 3: “Defining the Page Flow and Navigation”

This chapter describes how to create the skeleton pages in your JSF application and define the
navigation between them.

Chapter 4: “Developing Application Standards”

This chapter discusses the role of standards in application development and demonstrates how to
implement them in the SRDemo application.

Chapter 5: “Developing a Simple Display Page”

This chapter describes how to create a simple display page at the center of the SRDemo
application that enables users to view information about service requests.

Chapter 6: “Implementing Login Security”

This chapter describes how to build security for the SRDemo application.

Chapter 7: “Developing a Search Page”

This chapter describes how to build a search page. The page contains two sections, one used to
specify the query criteria and the other to display the results.

Chapter 8: “Developing a Master-Detail Page”

In this chapter, you develop a master-detail page that shows a service request and its Service
Request History rows.

Related Documents

Preface iii

Chapter 9: “Implementing Transactional Capabilities”

This chapter describes how to build the pages to create a service request. The service request
process involves three main pages: one to specify the product and problem, one to confirm the
values, and one to commit and display the service request ID. You also create a fourth page,
which displays some frequently asked questions about solving some typical product problems.

Chapter 10: “Developing an Edit Page”

This chapter describes how to create a page that enables managers and technicians to edit service
requests.

Chapter 11: “Deploying the Application to Oracle Application Server 10g”

In this chapter, you use JDeveloper to create a deployable package that contains your application
and required deployment descriptors. You then deploy the package.

Related Documents
For more information about building applications with Oracle ADF, see the following
publications:

 Oracle Application Development Framework Developer's Guide 10g Release 3 (10.1.3)

 Oracle Application Development Framework Developer's Guide for Forms/4GL Developers 10g
Release 3 (10.1.3)

 Getting Started 1-1

1

Getting Started

This tutorial describes how to build an end-to-end J2EE Web application by using Oracle
JDeveloper, Oracle ADF, and Oracle TopLink. The application uses various J2EE technologies,
including Enterprise JavaBeans (EJB) and JavaServer Faces (JSF). In the tutorial, you learn how to
use JSF for the application’s user interface and for control of application navigation.

This chapter contains the following sections:

 Tutorial Scenario: Overview

 Using This Tutorial

 Starting JDeveloper

 Creating a JDeveloper Database Connection

 Defining an Application and its Projects in JDeveloper

 Summary

Tutorial Scenario: Overview

1-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Tutorial Scenario: Overview
ServiceCompany is a company that provides service support for large household appliances
(dishwashers, washing machines, microwaves, and so on). It handles support for a wide variety
of appliances and attempts to solve most customer issues by responding to service requests over
the Web.

ServiceCompany has found that over time, customers can resolve most issues after they have the
correct information. This approach has been shown to save time and money for both the
company and its customers. A service request can be created at the request of a customer,
technician, or manager.

Service requests opened by employees can represent any type of internal information associated
with a product (examples include product recalls, specific problems with products, and so on).

The Business Problem
ServiceCompany has seen service requests increase but resolutions to them have decreased
over the past two quarters. As a consequence, the company has decided to implement a more
customer-friendly system and a more efficient and speedy request resolution service.

ServiceCompany wants to be able to provide the same service and response to all customers,
regardless of the channel of service request placement and service request type.

Business Goals
ServiceCompany has the following goals:

 Record and track product-related service requests

 Resolve service requests smoothly, efficiently, and quickly

 Manage the assignment and record the progress of all service requests

 Completely automate the service-request process

 Enable managers to assign service requests to qualified technicians

 Enable customers and technicians to log service requests

 Track the technicians’ areas of product expertise

Business Solution
ServiceCompany has decided to implement a new, fully automated system that is built using
Oracle Application Development Framework (ADF). This enables highly productive
development of a standards-based J2EE application structure. The application server will be
Oracle Application Server 10g.

The major components of the new application are:

 A customer interface to enable any user (customer, technician, or manager) to add,
update, and check the status of service requests

Tutorial Scenario: Overview

 Getting Started 1-3

 User interfaces with which the company can create, update, and manage service
requests. This includes assigning requests to the appropriate technician and gathering
cumulative history information.

 Various reporting tools to ensure timely resolution of service requests

 A user interface with which technicians can update their areas of product expertise

The following process represents the planned flow of a customer-generated service request:

1. A customer issues a request via a Web interface.

2. A manager assigns the request to a technician.

3. The technician reviews the request and then either supplies a solution or asks the
customer for more information.

4. The customer checks the request and either closes the request or provides further
information.

5. Managers can review an existing request for a technician and (if necessary) reassign it to
another technician.

6. Technicians identify products in their area of expertise. Managers can then use this
information in assigning service requests.

The technologies to be employed in building the application are as follows:

 The technology employed will be Oracle ADF.

 The data will be stored in Oracle Database 10g.

 The data model and business logic will be implemented by using Oracle TopLink and
Enterprise JavaBeans.

 Databinding (mapping between client components and the business logic) will be
provided by Oracle ADF.

 The Web client layer will be built using JSF pages and ADF Faces components.

 Authorization will be based on J2EE container security.

 Deployment of the application will be to Oracle Application Server 10g.

Design Patterns and Architectural Frameworks
A good practice when developing applications is to employ design patterns. Design patterns
are a convenient way of reusing object-oriented concepts between applications and between
developers. The idea behind design patterns is simple: document and catalog common
behavior patterns between objects. Developers can then make use of these patterns rather
than re-create them.

In addition to design patterns, developers often use architectural frameworks to build
applications that perform in a standard way. One of the frequently used architectural
patterns is the Model-View-Controller (MVC) pattern.

In the MVC architecture, the user input, the business logic, and the visual feedback to the

Using This Tutorial

1-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

user are explicitly separated and handled by three types of objects. Each of these objects is
specialized for a particular role in the application:

 The view manages the presentation of the application output to the user.

 The controller interprets the mouse and keyboard inputs from the user, commanding the
model and/or the view to change as appropriate.

 The model manages the data of the application domain, responds to requests for
information about its state (usually from the view), and responds to instructions to
change state (usually from the controller).

The formal separation of these three components is a key characteristic of a good design.

Another popular design pattern for J2EE applications is the Session Facade pattern. The
Session Facade pattern hides complex interactions between the application components from
the client's view. It encapsulates the business logic that participates in the application
workflow and therefore simplifies the interactions between application components. The
session bean (representing the Session Facade) manages the relationships between business
objects. The session bean also manages the life cycle of these participants by creating,
locating (looking up), modifying, and deleting them as required by the application.

In this tutorial, you use the Session Facade design pattern in the application’s model, and
you use the MVC architecture through the use of Oracle ADF and JavaServer Faces.

Using This Tutorial
The tutorial is divided into separate chapters, with each chapter building on the previous one.
You must complete each chapter in the order presented in the tutorial.

This section describes all of the prerequisite steps that you need to complete before starting to
build the application itself.

Setting Up Your Environment
You need to prepare your working environment to support the tutorial application. To do
this, you perform the following key tasks:

 Prepare to install the schema

 Create the SRDEMO schema owner and install the Service Request schema

 Start Oracle JDeveloper 10g Release 3

 Create a JDeveloper database connection

 Define an application and projects for the tutorial

Using This Tutorial

 Getting Started 1-5

Preparing to Install the Schema
The schema consists of five tables and three database sequences. The tables are diagrammed
as follows:

The five tables represent creating and assigning a service request to a qualified technician.

Using This Tutorial

1-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Tables
USERS: This table stores all the users who interact with the system, including customers,
technicians, and managers. The e-mail address, first and last name, street address, city,
state, postal code, and country of each user are stored. An ID uniquely identifies a user.

SERVICE_REQUESTS: This table represents both internal and external requests for activity
on a specific product. In all cases, the requests are for a solution to a problem with a
product. When a service request is created, the date of the request, the name of the
individual who opened it, and the related product are all recorded. A short description
of the problem is also stored. After the request is assigned to a technician, the name of
the technician and date of assignment are also recorded. An artificial ID uniquely
identifies all service requests.

SERVICE_HISTORIES: For each service request, there may be many events recorded. The
date the request was created, the name of the individual who created it, and specific
notes about the event are all recorded. Any internal communications related to a service
request are also tracked. The service request and its sequence number uniquely identify
each service history.

PRODUCTS: This table stores all of the products handled by the company. For each
product, the name and description are recorded. If an image of the product is available,
that too is stored. An artificial ID uniquely identifies all products.

EXPERTISE_AREAS: To better assign technicians to requests, the specific areas of expertise
of each technician are defined.

Sequences
USERS_SEQ: Populates the ID for new users

PRODUCTS_SEQ: Populates the ID for each product

SERVICE_REQUESTS_SEQ: Populates the ID for each new service request

1. Obtain the ADF_tutorial_setup.zip file at the following location:
http://download.oracle.com/otndocs/products/jdev/1013/ADF_tutorial_setup.zip

2. Unzip the file to a temporary directory (e.g., C:\temp\ADFTutorialSetup\) to
expose the files that are used to create the three images for the Web pages. For the
remainder of the tutorial, this directory is referred to as <tutorial_install>.

Starting Oracle JDeveloper

 Getting Started 1-7

Installing the Service Request Schema
The SRDEMO user owns the data displayed in the application. Access to an Oracle SYSTEM user
or equivalent is required to create the user account and to assign the appropriate privileges.
The createSchema.sql file contains all the commands necessary to create the database user.
The createSchemaObjects.sql file connects as the SRDEMO user and creates all the tables,
constraints, and database sequences for the tutorial. Finally, the
populateSchemasTables.sql file inserts example data into the tables for use during the
tutorial.

Caution: For security reasons, it is not advisable to install the ADF
tutorial schema into a production database. You may need the
assistance of your DBA to access an account with the privilege to create
a user.

1. Invoke SQL*Plus and log on as SYSTEM or as another DBA-level user. You may need to
ask your DBA to give you an account or to run the scripts for you.

2. In the SQL*Plus window, start the build.sql script from the directory where you
unzipped it. For example:

SQLPLUS>Start <tutorial_install>\scripts\build.sql

After control is returned to the build.sql script, the list of the created objects is
displayed along with any potential invalid objects. Running these scripts should take less
than 30 seconds. You may rerun the build.sql script to drop and re-create the SRDEMO
owner and objects.

Starting Oracle JDeveloper
Follow these instructions to prepare JDeveloper Studio.

Note: If you have not already installed JDeveloper 10g Release 3, then do
so before proceeding with the next tutorial steps.

1. In Windows Explorer, navigate to the directory where JDeveloper is installed. In the root
directory, double-click the JDeveloper.exe icon to invoke JDeveloper. If this is the first
time JDeveloper has been run, a “Do you wish to migrate” window appears.

2. Click No to continue. You will build the entire application from scratch.

3. On startup, a “Tip of the Day” window appears. These tips are things you can do to
make development more productive. Click Close when you’ve finished looking at the
tips.

Creating a Database Connection to Access the SRDEMO Schema

1-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Creating a Database Connection to Access the SRDEMO
Schema

Follow these instructions to create a new database connection to the Service Request schema
using the SRDEMO user.

1. In JDeveloper, choose View > Connections Navigator.

2. Right-click the Database node and choose New Database Connection.

3. Click Next on the Welcome page.

4. In the Connection Name field, type the connection name SRDemo. Then click Next.

5. On the Authentication page, enter the values as shown in the following table. Then click
Next.

Field Value

Username SRDEMO

Password Oracle

Deploy
Password

Select the check box

6. On the Connection page, enter the following values. Then click Next.

Field Value

Host Name localhost

This is the default host name if the database is on the same
machine as JDeveloper. If the database is on anther
machine, type the name (or IP address) of the computer
where the database is located.

JDBC Port 1521

This is the default value for the port used to access the
database. If you do not know this value, check with your
database administrator.

SID ORCL

This is the default value for the SID that is used to connect
to the database. If you do not know this value, check with
your database administrator.

Note: In the tutorial, the database connection is named SRDemo. The name of the
connection does not affect the ability to complete the tutorial. However, we
strongly recommend using the naming conventions described in all the steps. In
doing so, it is easier to follow the instructions.

Creating a Database Connection to Access the SRDEMO Schema

 Getting Started 1-9

7. Click Test Connection. If the database is available and the connection details are correct,
then continue. If not, click the Back button and check the values.

8. Click Finish. The connection now appears below the Database Connection node in the
Connections Navigator.

9. You can now examine the schema from JDeveloper. In the Connections Navigator,
expand Database > SRDemo. Browse the database elements for the schema and confirm
that they match the schema definition above.

Defining an Application and Its Projects in JDeveloper

1-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Defining an Application and Its Projects in JDeveloper
In JDeveloper, you work within projects that are contained in applications.

An application is the highest level in the control structure, serving as a collector of all the
subparts of the application. When you open JDeveloper, the applications, which were opened
when you last closed JDeveloper, are opened by default.

A JDeveloper project is an organization structure used to logically group related files. In a J2EE
application, a project typically represents a part of the application architecture, such as the data
model or a part of the client.

You can add multiple projects to your application to easily organize, access, modify, and reuse
your source code.

Before you create any application components, you must first create the application and its
projects. Use the following procedure to create the new SRDemo application and its projects.

Note: Do not include special characters in the project name (such as
periods) or in any activity or element names. If you include special
characters, errors appear when you attempt to compile your project.

1. To create an application, click in the Applications Navigator, right-click the
Applications node, and select New Application from the shortcut menu.

2. In the Create Application window, enter the following values:

3. Click OK.

Field Value

Application
Name

SRDemo

Directory
name

<jdev_install>\jdev\mywork\SRDemo

Keep the default value. If you used the default directory
structure, then your path should match this value. The
directory is created for you in the specified path, which
represents the application.

Application
Package
Prefix

oracle.srdemo

This value becomes the prefix for all Java package names.
You can override it later if necessary.

Application
Template

No Template [All Technologies]

In this tutorial, you access all of JDeveloper’s technologies.
New templates can be created and added to restrict the
technologies that are available during development.

Defining an Application and Its Projects in JDeveloper

 Getting Started 1-11

4. The Create Project dialog box appears. Set the values as follows:

Field Value

Project Name DataModel

Directory
name

<jdev_install>\jdev\mywork\SRDemo\DataModel

Keep the default value. If you used the recommended
directory structure, then your path should match this value.
The directory is created for you in the specified path to
contain the project’s files.

5. Click OK.

The DataModel project represents the data model tier of your application. You build the
components of this project in the next chapter by using Oracle TopLink.

6. Create another Project at the same level as the DataModel project. In the Applications
Navigator, right-click the SRDemo node and select New Project.

7. The New Gallery is invoked. Verify that Empty Project is selected. Then click OK.

The new project becomes the child of a selected application node. To find out more about
the types of projects and when they should be used, search Help for “Projects Category.”

8. In the Create Project pane, set the values as follows.

Field Value

Project Name UserInterface

Directory
name

<jdev_install>\jdev\mywork\SRDemo\
UserInterface

Keep the default value. If you used the recommended
directory structure, your path should match this string.

9. Click OK. The UserInterface project represents the remainder of the application and

Summary

1-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

contains the files that you create for the user interface in later chapters.

10. Double-click the new UserInterface project and select the Dependencies node.

11. Select the check box associated with the DataModel project. This enables the
UserInterface project to access objects created in the DataModel project.

12. Select the Project Content node. At the bottom of the panel, set the Default Package to
oracle.srdemo.userinterface. Then press OK. This enables you to better manage
your classes and files.

13. Double-click the DataModel project and select the Project Content node.

14. At the bottom of the panel, set the Default Package to oracle.srdemo.datamodel. Then
press OK. This enables you to better manage your classes and files.

Your Applications Navigator should look like the following screenshot. You are now ready
to create application components for the tutorial.

Summary
In this chapter, you carried out all of the prerequisite steps that you need to complete before
starting to build the application. You performed the following key tasks:

 Prepared the tutorial schema setup

 Installed the Service Request schema

 Started JDeveloper

 Created a JDeveloper database connection

 Defined an application and its projects in JDeveloper

Developing the Data Model 2-1

2
Developing the Data Model

This chapter describes how to build the data model for your application using Oracle TopLink
and Oracle ADF.

The chapter contains the following sections:

 Introduction

 Creating the Data Model Using Oracle TopLink

 Refining the TopLink Definitions

 Creating TopLink Named Queries

 Creating a TopLink Session

 Creating an EJB Session Bean

 Creating ADF Data Controls

 Summary

Introduction

2-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
TopLink provides Java object-to-relational persistence, enabling you to create Java objects for
accessing and persisting relational data. Oracle ADF lets you use these TopLink objects in your
user interface through ADF data controls. These data controls enable client applications to use the
data without concern for the underlying technology choice (in this case, Oracle TopLink).

You perform the following key tasks in this chapter:

1. Create TopLink POJOs (Java objects) for the database objects

2. Create a TopLink session

3. Create TopLink named queries

4. Create an EJB session bean

5. Create ADF data controls for the EJB session bean POJOs

Creating the Data Model Using Oracle TopLink
All data access performed by the application goes through the data model. This section shows
you how to map the tables in your database to TopLink classes.

Creating TopLink Mappings for the Database Objects

Note: Underlying database schemas sometimes change after the TopLink mappings
are created. In such cases, you can delete the objects and mappings and then re-create
them. But it is better to have an agreed-upon database schema before creating the
TopLink objects.

In this step, you reverse-engineer TopLink Java objects from existing database tables in the
SRDEMO schema.

1. In the Applications Navigator, right-click the DataModel project and select New.

2. In the New Gallery, expand the Business Tier node, select TopLink, and choose Java
Objects from Tables in the Items list.

3. Click OK.

TopLink requires a TopLink map file for each project. This file contains information about
how classes are mapped to database tables. After the TopLink objects are created, you can
edit this file to make changes to the default mappings. You need to create a new map for your
project.

4. In step 1 of the “Create Java Objects from Tables“ Wizard, click the New button for the
TopLink Map property.

5. In the Create Object-Relational Map dialog box, set the TopLink Map Name to SRMap and
ensure that the connection is set to SRDemo.

Creating the Data Model Using Oracle TopLink

Developing the Data Model 2-3

6. Click OK.

7. Return to step 1 of the wizard and click Next.

8. In step 2 of the wizard, select the tables that you want represented as TopLink objects.
Click the Query button to display the available tables. Click the >> button to move all the
available tables to the Selected side.

9. Click Next.

10. In step 3 of the wizard, confirm that the package name is oracle.srdemo.datamodel.
If not, you need to modify it.

11. Click Next.

Creating the Data Model Using Oracle TopLink

2-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

12. In step 4 of the wizard, notice the fully qualified Java class name for each of the database
tables. Click Finish to complete the wizard.

13. Save your work by clicking the Save All button on the toolbar or by selecting File > Save
All from the menu. Expand Application Sources. It should now look like this:

You have created TopLink POJOs for each of the five tables from the SRDEMO schema. Each of
the .java files contains the code for the attribute definitions, constructors, getters, and
setters.

14. Double-click the Products.java file to examine its contents. Notice that a variable is
created for each of the columns from the table. Scroll down to view the constructors,
getters, and setters.

The TopLink mapping file contains the object-to-table mappings. You can navigate to each
object in the Structure window and view it in the editor.

15. In the Applications Navigator, click SRMap to select it. In the Structure window, expand
the oracle.srdemo.datamodel node. Each node represents a created object.

16. Expand the Products node to reveal the mapped attributes and collections. It should look
like the following screenshot:

Refining the TopLink Definitions

Developing the Data Model 2-5

Notice that there are several attributes and collections shown. Collections represent the
relationship of the selected object to other objects in the model. For example, the
expertiseAreasCollection collection represents the parent-child relationship to the
ExpertiseAreas object.

Refining the TopLink Definitions
In this section, you refine the names of created TopLink objects, attach a sequence generator for
primary key values, and specify some default values.

In some cases, you might want to define object names that are more meaningful than the default
names assigned by TopLink. You can easily change an object’s name.

The ServiceHistories.java file has both an integer for svrId and a ValueHolderInterface
for service requests. The svrId integer is used in a non-object-oriented approach, so you delete
that integer and just keep the collection for service requests. You also make similar changes to the
ExpertiseAreas.java file.

1. In the Applications Navigator, double-click the ServiceHistories.java file, which
opens the file in the code editor. In the editor, delete the line of code private Integer
svrId. The variable svrId is used in setter and getter methods in this class. When you
remove the variable, the code editor displays red bars in the right-hand gutter of the
editor, where the variable was used but is not longer available. These are the methods
you also need to remove.

2. Delete the getter (getSvrId) and setter (setSvrId) at the second and third location of
these red bars (click the red bar to go to the particular method).

3. Repeat the previous two steps, this time for the ExpertiseAreas.java file. Delete
private Integer prodId and private Integer userId, and then delete the getters and
setters for those scalar attributes. There are six delete operations: two for the attributes,

Refining the TopLink Definitions

2-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

two for the getters (getProdId and getUserId), and two for the setters (setProdId and
setUserId).

4. Save your work.

Adding Code to Manage Default Values
If you need to provide for default values for attributes, you can add that code directly to the
setter methods in the Java classes.

In the next few steps, you include default values for the ServiceRequests POJO:

1. Double-click ServiceRequests.java to open it in the code editor.

2. Find the setReequestDate(Timestamp) method and make the following changes. (This
code sets the requestDate to use the current time and date as its default)

public void setRequestDate(Timestamp requestDate) {

 this.requestDate = (requestDate==null)

?new Timestamp(System.currentTimeMillis()):requestDate;

}

3. Change setStatus to use “Open” as its default.
public void setStatus(String status) {

 this.status = (status==null)?"Open":status;

}

Save your work and include more business logic to set default values and increment the line
number for the ServiceHistories POJO. Make the following changes to the
ServiceHistories POJO:

1. Set svhDate to use the current time and date as its default. Comment out the current
assignment.

public void setSvhDate(Timestamp svhDate) {

 this.svhDate = (svhDate==null)

?new Timestamp(System.currentTimeMillis()):svhDate;

}

2. When the user adds a service history note, we want to determine the next line number
and use it automatically. To determine the number, add a method that iterates through
the current ServiceHistories collection to find the largest value, and then return that
value incremented by 1. The method is used to calculate the next line number for a new
service history record. It will iterate through the existing ServiceHistories to find the
largest line number. Add the method as follows:

Refining the TopLink Definitions

Developing the Data Model 2-7

 public Integer getNextLineItem() {

 int maxLineNo = 0;

 for (ServiceHistories

 svh:getServiceRequests().getServiceHistoriesCollection()){

 if (svh.getLineNo() !=null) {

 int testLineNo = svh.getLineNo().intValue();

 if (testLineNo > maxLineNo){

 maxLineNo = testLineNo;

 }

 }

 }

 return ++maxLineNo;

 }

3. Obtain the setLineNo value from the getNextLineItem method.

public void setLineNo(Integer lineNo) {

 this.lineNo = (lineNo==null)?getNextLineItem():lineNo;

}

4. In the Applications Navigator, select the DataModel project. From the context menu
select Rebuild, to compile the classes. Fix any problems, then move on.

Using Toplink, you can declaratively use a database sequence to populate a column. In the
next few steps, you select the primary key of the ServiceRequests table and set it to use a
database sequence.

1. In the Applications Navigator, expand the TopLink node, and then select SRMap. In the
Structure window, expand the oracle.srdemo.datamodel node under SRMap.

The sequence generator supplies values for the SERVICE_REQUESTS.SVR_ID column, so
attach it to the ServiceRequest mapping.

2. Double-click the SRMap and set the radio button to set the sequence to use Native
Sequence.

3. Double-click the ServiceRequests node to see the mapping details for service requests. In
the middle of the page, set the values for the Use Sequencing area of the page as follows.

Field Value

Use Sequencing Select the check box.

Name SERVICE_REQUESTS_SEQ

Table SRDEMO.SERVICE_REQUESTS

Creating TopLink Named Queries

2-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

(Should be the default)

Field SRDEMO.SERVICE_REQUESTS.SVR_ID
(Should be the default)

You have now finished the business logic changes for the data model. In the next section,
you declaratively create some special methods for the pages.

3. Save your work.

Creating TopLink Named Queries
Named queries provide a means of defining complex or commonly-used queries to access the
database. Named queries offer some key advantages: they enable TopLink's internal performance
optimizations to work better and make maintenance easier by centralizing the management of
queries.

In the tutorial, you need to pass values between a Web client and TopLink with named queries.
Each of these named queries includes a parameter and an expression that applies an incoming
parameter to the query. You define both the query and the parameter expression in the next few
steps.

Creating a Named Query
1. In the Applications Navigator, select the SRMap node under the TopLink node. In the

Structure window, double-click the SRMap node and expand the
oracle.srdemo.datamodel node. Each node represents a created object.

2. Click the ServiceRequests node, and then click the Queries tab. Click the Add button to
create a new named query.

Creating TopLink Named Queries

Developing the Data Model 2-9

3. In the Add TopLink Named Query pane, type findServiceRequests as the name of the

new query. Click OK to continue.

4. With the findServiceRequests named query selected, click the General tab. In the
Parameters area of the editor, click the Add button.

5. In the Class Browser window, click the Search tab. This is where you define the
parameter type.

6. You can simply type Integer and you will see Integer (java.lang). When the
java.lang.Integer matching class is highlighted, click OK to define the type.

7. In the Parameters area, change the parameter name to filedBy.

8. Create a second parameter of java.lang.String and name it status.

Defining a Query Expression
Now that you have defined two parameters (filedBy and status), you need to define an
expression using them. This expression defines how the parameter is associated with an
attribute in the named query. The expression is evaluated at run time to determine the rows
returned by the named query.

1. With the findServiceRequests named query selected, click the Format tab and then click
the Edit button in the Parameters area of the editor.

Creating TopLink Named Queries

2-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

2. In the Expression Builder, click Add to create a new expression.

3. In the First Argument area of the expression, click Edit. In the Choose Query Key pane,
select status.

4. Click OK to continue.

5. Back in the Expression Builder, set the Operator to Like, and the Second Argument to
the status parameter that you created earlier. It should look like the following
screenshot.

6. When the first component of the expression is complete, select it and click the Add

Nested button. Then select the 2.AND node and change the Logical Operator to OR.

7. Set the nested expression component to the values in the following table. Select the check
box to Allow Nulls in the expression.

Field First Argument Operator Second Argument
(Parameter)

Second
Component

AssignedTo(AllowsNull).userId EQUAL filedBy

8. Create a second nested expression component at the same level as the previous one. Click
the Add button to do this (not the Add Nested button). Set the values to those in the
following table. Select the check box to Allow Nulls in the expression.

Field First Argument Operator Second Argument
(parameter)

Third
Component

CreatedBy(AllowsNulls).userId EQUAL filedBy

When complete, your expression should look like the following. Confirm your results,
make changes if necessary, and click OK when done.

Creating TopLink Named Queries

Developing the Data Model 2-11

Creating More Named Queries
1. Create another named query on the ServiceRequests POJO using the values provided in

the following table: Set the Type to ReadObjectQuery.

Field Value

Name findServiceRequestById

Parameter Type java.lang.Integer

Parameter Name findSvrId

2. Create an expression for the named query using the values in the following table:

Field Value

First Argument svrId

Operator EQUAL

Second Argument findSvrId

3. Now create some named queries in other POJOs. Create a named query on Users using
the values provided in the following table: Set the Type to ReadObjectQuery.

Field Value

Name findUserById

Parameter Type java.lang.Integer

Parameter Name createdBy

4. Add an expression for the named query using the values in the following table:

Field Value

First Argument userId

Creating a TopLink Session

2-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Operator EQUAL

Second Argument createdBy

5. Finally, create a named query on Products using the values provided in the following
table: Set the Type to ReadObjectQuery.

Field Value

Name findProductById

Class Name java.lang.Integer

Parameter Name prodId

6. Create an expression for the named query using the values in the following table:

Field Value

First Argument prodId

Operator EQUAL

Second Argument prodId

7. Save all your work. To ensure that you've done all the steps correctly, right-click the
SRMap and select Generate Mapping Status Report from the context menu.

In the messages area, the Mapping Status–Log should show that the SRMap does not
contain any errors. If yours does contain errors, recheck the values you entered for the
steps in this section.

Creating a TopLink Session
You now create a TopLink session. To do this, you first define a session configuration file. The
TopLink session configuration is used at run time to maintain state information about each
running session. It also supplies database connection information for the session. Each active
connection to the application receives a unique session object.

By default, a session is created named default. In the following steps, you create a new session
with a name that you define:

1. In the Applications Navigator, select the sessions.xml file. In the Structure window,
select the default session and delete it.

2. Double-click the sessions.xml file in the Structure window and click the Add button in
the editor.

Creating a TopLink Session

Developing the Data Model 2-13

3. Name the new session SRDemoSession, and then click OK. Leave the remaining

properties set to their defaults.

4. Click Save All to save your work.

In the next few steps, you enable logging so that you can see the detailed results of running
your application. This is useful if you need to debug. You also set the data source location to
use a data source definition instead of a direct database connection. This will prove useful
during the deployment phase of this application development. You can then change the
connection details without affecting any code or settings in the application.

5. In the Structure window, select the SRDemoSession session. The editor displays the
session name and three tabs: General, Logging, and Login.

6. Click the Logging tab and set the Enable Logging property to True.

7. On the Login tab, select the Data Source option and set its value to jdbc/SRDemoDS. This
value is case sensitive, so make sure the case matches the case that you used for your
connection name.

8. Click Save All to save your work.

In addition to specifying connection information, you can also switch logging features either
on or off for the session. The logging feature records session information at a level you
choose. For example, you can choose to log debugging information, application exceptions,
or both.

In the next steps, you create a session bean named SRPublicFacade in the

Creating an EJB Session Bean

2-14 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

oracle.srdemo.datamodel package.

Creating an EJB Session Bean
In this section, you create an EJB session bean to provide an access point for your application. The
client application uses this session bean for its access to the data model. This approach follows
the Session Facade design pattern for constructing applications.

Session beans encapsulate business logic and business data while exposing the necessary
interfaces. As such, the client tier can make use of the distributed services within the model
without concern for its complexity. The session bean is made up of two files:

 SRPublicFacadeBean contains the bean code.

 SRPublicFacadeLocal is a local interface for the session bean.

In these next few steps you create a Session Bean and interface to represent the TopLink POJOs.

1. Create a session bean named SRPublicFacade in the oracle.srdemo.datamodel
package. In the Applications Navigator, select the DataModel project and then select
New from the context menu.

2. In the New Gallery, expand the Business Tier and click the EJB node. In the Items pane,
select the Session Bean and then click OK.

3. In the Create Session Bean Wizard, “Step 1: EJB Name and Options,” set the values as
follows and then click Next:

Field Value

EJB Name SRPublicFacade

Session Type Stateless

Transaction Type Container

Generate Session
Façade Methods

Select the check box.

Entity
Implementation

Select the TopLink POJOs option.

In “Step 2: Session Facade,” you want the Session Facade pattern to incorporate all the
methods and named queries. Expand the ServiceRequests node to expose your
declaratively created named query. Ensure that all check boxes are selected, and then
click Next.

Creating an EJB Session Bean

Developing the Data Model 2-15

4. In “Step 3: Class Definition,” ensure the Bean Class is set to

oracle.srdemo.datamodel.SRPublicFacadeBean. The default directory is acceptable.
Click Next.

5. In the final wizard step, clear the Implement a Remote Interface check box and leave
Implement a Local Interface check box selected. You need this selection when you are
working with a Web client, as you are here.

6. Click Finish to complete the process. The Applications Navigator now displays the new
SRPublicFacadeBean class (as shown in the following screenshot):

Customizing the Session Bean
The application you are building focuses on creating and maintaining service requests. The
best practice for creating new rows is to add a method to the session bean that accepts
parameters and creates a new row based on those parameters. Because this is a method in the
session bean, you can add whatever code is required, no matter how simple or complex. For
your convenience, the code for the create service request method is provided in the setup
files for this tutorial.

In the next few steps, you copy this code into the session bean.

Creating ADF Data Controls

2-16 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

1. Select SRPublicFacadeBean, and expand the Sources node in the Structure window.
Double-click the SRPublicFacadeLocal node to open the file in the editor.

2. The code you need to enter can be found in a file from the <tutorial_setup>\files\
directory. In Windows Explorer, find and open the CreateInterface.txt file. Copy the
code and paste it at the bottom of the SRPublicFacadeLocal file (before the closing
brace).

3. Add the detail methods in SRPublicFacadeBean. Double-click SRPublicFacadeBean to
invoke it in the editor. In the <tutorial_setup>\files\ directory, open the
CreateSession.txt file. Copy all the code and paste it into SRPublicFacadeBean.java.

4. Save your work.

Creating ADF Data Controls
To make use of your TopLink POJOs and SRPublicFacadeBean, you need to create ADF data
controls.

Data controls provide the interface that binds the data model to your user client application. This
means that when you later develop your client application, you can base your page components
on the data controls without concern for the actual technology that was used to build the data
model (in this case, TopLink and EJB session beans).

You now create a data control that provides access to the objects defined in your TopLink map
(SRMap), as follows:

In the Applications Navigator, right-click the SRPublicFacadeBean.java node and choose
Create Data Control from the context menu.

The details of the data control are maintained in several files. These include XML files that
determine which built-in operations are allowed for each object. Here is a summary of the files
created for the data control.

You can also add properties to a bean that will alter the run-time behavior of the data control. Some of
the most common properties are:

 Control hints: Provide label text, tool-tip text, and formatting rules

 Attribute rules: Enable primary key definition and query rules

File Name (or Example) File Type

Users.xml, ServiceRequests.xml,

etc.
Represents an individual POJO (one for each) and
describes its attributes, accessors, and parameters

UpdateableSingleValue.xml

Controls operations on objects with single values

UpdateableCollection.xml Controls operations on objects with multiple
values

DataControls.dcx

(in oracle.srdemo package)
Defines the interface used for the data control

Summary

Developing the Data Model 2-17

 Declarative validation rules (such as value comparison, list validation, range validation,
and expression validation)

The Bean Properties Editor gives you a tool to customize bean behavior without requiring Java
code in the bean class. The changes you make using this editor are stored in the XML file for each
POJO (such as Users.xml).

You can access the bean properties editor from the Structure window:

1. Click the Users.xml file in the Applications Navigator.

2. Right-click Users (the top-level object) in the Structure window and select properties from
the context menu to open the Bean Properties Editor. You can now explore the multiple
options for defining declarative rules for a specific JavaBean.

Build Your Application
As the last step in this chapter, you compile your application to ensure that everything you did
worked.

1. Right-click SRDemo and select Rebuild from the context menu.

2. Check the log window to make sure that there are no compile errors (or other errors).

Summary
In this chapter, you built the data model for your application. To accomplish this, you performed
the following key tasks:

 Created TopLink POJOs (Java objects) for the database objects

 Refined the TopLink definitions

 Created a TopLink session

 Created an EJB session bean

 Generated ADF data controls for each of the objects defined in your TopLink map

 Created TopLink named queries for the data model

Note: As part of the tutorial setup files, we have included a zipped application for
each chapter with the steps completed successfully.

If your application does not compile correctly or if it has other errors, you can use
these applications as a starting point for the following chapter. There are instructions
on how to use these starter applications at the beginning of each chapter.

Defining Page Flow and Navigation 3-1

3
Defining Page Flow and Navigation

This chapter describes how to create outline definitions for each of the pages in your JSF
application and specify the navigation between them. You do this using a diagrammer in
JDeveloper.

The chapter contains the following sections:

 Introduction

 Creating a JSF Navigation Model

 Creating Page Icons on the Diagram

 Linking the Pages Together

 Summary

Introduction

3-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
In the previous chapter, you built the data model for the Service Request application. Ensure that
you have successfully built the data model, as described in that chapter, before you start to work
on this one.

In this chapter, you start to work on the user interface. You use the JSF Navigation Modeler in
JDeveloper to diagrammatically plan and create your application’s pages and the navigation
between them. You perform the following key tasks:

 Creating a page-flow diagram

 Creating page placeholders on the diagram

 Defining the navigation rules and navigation cases between the pages

Creating the JSF Navigation Model
With the JSF Navigation Modeler, you can visually design your application from a bird’s-eye
view. In the following steps, you open a new empty diagram and add a title to it:

1. In the Applications Navigator, right-click the UserInterface node, and select New from the short
cut menu.

2. In the New Gallery, expand the Web Tier node and select JSF in the Categories pane.

3. Choose JSF Page Flow & Configuration (faces-config.xml) from the Items pane. Then
click OK.

Note: If you did not successfully complete Chapter 2, you can use the end-of-chapter
application that is part of the tutorial setup:

1. Create a subdirectory named Chapter3 to hold the starter application. If you
used the default settings, it should be in
<jdev-install>\jdev\mywork\Chapter3.

2. Unzip <tutorial-setup>\starterApplications\SRDemo-
EndOfChapter2.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev-install>\jdev\mywork\Chapter3\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 2.

 Creating the JSF Navigation Model

 Defining Page Flow and Navigation 3-3

This choice adds a JSF configuration file to your project. You edit the JSF configuration
file by using the JSF Navigation Modeler to specify navigation rules between the pages
of your application.

4. In the Create JSF Configuration File dialog box, accept the default name
faces-config.xml and create it in the default directory location. Click OK to continue.

The empty diagram opens. Notice the Component Palette to the right of the diagram
editor. You use this to create components for the JSF Navigation Model.

Notice also the four tabs at the bottom of the diagram editor screen. The default view is
the Diagram view, where you can model and create the pages in your application.
Clicking the Overview tab shows a console-type interface that enables you to register any
and all types of configurations into your faces-config file, including managed beans,
navigation rules, and other items such as custom validators, converters, and so on. The
Source tab enables you to edit the generated XML code directly. JDeveloper
automatically synchronizes the different views of your JSF navigation. Finally, the
History tab shows a history of recent changes.

5. Add a title to your diagram. Select Note from the Component Palette, where the JSF
Navigation Diagram choices are listed, and then drag it to the upper-left portion of your
diagram.

It is good practice to provide annotation to a diagram, and the general Note component
is useful for this purpose.

6. Type SRDemo Navigation Diagram in the box on the diagram, and then click elsewhere
in the diagram to create the note. The note serves as your diagram’s title.

Creating Pages on the Diagram

3-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Creating Pages on the Diagram
There are two ways to add a page to a page flow diagram. If you have already created some JSF
pages, you can drag them from the Navigator to the diagram. Alternatively, you can create the
pages directly in the diagram.

You have not yet created any pages for the SRDemo application. In the following steps, you
create placeholders for pages in the application. (You define the pages fully in subsequent
chapters of the tutorial.)

1. Select JSF Page in the Component Palette, and click where you want the page to appear
in the diagram.

An icon for the page is displayed on the diagram. At this stage, the icon initially has a
yellow warning over it to remind you that it is simply a placeholder rather than a fully
defined page.

2. Click the icon label and type /app/SRList.jspx as the page name.

The SRList page is at the center of the application. It is a page where all users (customers,
technicians, and managers) can browse existing service requests.

The page name requires an initial slash so that it can be run. If you remove the slash
when you type the name, it is reinstated. You can create the detailed pages either
iteratively (as you develop the page flow diagram) or at a later stage.

For the purposes of the tutorial, you create placeholders for all the pages in the
application at this point and build the detailed pages in later chapters.

3. Repeat steps 1 and 2 to create five more page placeholders in the /app directory:

Page Name Page Purpose

/app/SRMain.jspx Enables users to add extra information to an
existing service request

/app/SRCreate.jspx Enables users to create a new service request
/app/SRCreateConfirm.jspx Confirmation screen for new requests
/app/SRCreateDone.jspx Final screen in the creation of a new request
/app/SRFaq.jspx Enables users to view commonly asked

questions

Note: The steps in this section showed you how to explicitly create a
new page flow diagram. You need to do this because you are just
starting to build the Web application and have not yet created any
pages. If you don't create a faces-config.xml file explicitly,
JDeveloper creates one automatically when you add a JSF page to your
project. Then you simply need to double-click it in the Navigator to
open it in the diagram editor.

 Linking the Pages Together

 Defining Page Flow and Navigation 3-5

4. Then create the following two staff-specific pages in the /app/staff directory:

Page Name Page Purpose
/app/staff/SREdit.jspx Enables managers and technicians to amend

service requests
/app/staff/SRSearch.jspx Enables users to search for a service request

These screens make up the SRDemo application. When you have finished, your diagram
should look like the following screenshot. If it does not, you can drag the pages to make your
diagram similar.

 Linking the Pages Together
Now that you have created placeholders for the application’s pages, you need to define how
users navigate between them. JSF navigation is defined by a set of rules for choosing the next
page to be displayed when a user clicks a UI component (for example, a command button). These
rules are defined in the JSF configuration file, which is created as you create the diagram. There

Linking the Pages Together

3-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

may be several ways in which a user can navigate from one page, and each of these is
represented by a different navigation case.

For the SRDemo application, you start by drawing simple navigation cases on the page flow
diagram.

Add a link to enable a user to navigate from the SRList page to the SRMain page:

1. Select JSF Navigation Case in the Component Palette.

2. Click the icon for the source JSF page (SRList), and then click the icon for the destination
JSF page (SRMain) for the navigation case.

The navigation case is shown as a solid line on the diagram, and a default label
(“success”) is shown as the name of the navigation case.

3. Modify the default label by clicking it and typing view over it. The SRList page has a
View button, which users click to navigate to the SRMain page.

4. Click the Overview tab at the bottom of the screen. Click Navigation Rules in the left
table. Notice that the rule you just created in the diagram is listed in the table.

5. To understand the syntax of the navigation rule you created, click the Source tab to see
the XML code for the rule. The following images show you the rule on the diagram and
in the source:

 Linking the Pages Together

 Defining Page Flow and Navigation 3-7

The <from-view-id> tag identifies the source page; the <to-view-id> tag identifies the
destination page. The wavy lines under the page names remind you that the pages have
not yet been created.

6. Repeat the steps to create more navigation cases on your diagram, as defined in the
following table.

The table shows the paths by which users navigate between the pages shown. For
example, a user clicks a View button on the SRList page to navigate to the SRMain page,
and clicks an Edit button to navigate to the SREdit page.

Source Destination Outcome
SRList SRMain view

SRList SREdit edit

SRList SRSearch search

SRMain SREdit edit

SREdit SRMain main

SRSearch SRMain view

SRSearch SREdit edit

SRList SRCreate create

SRCreate SRFaq FAQ

SRCreate SRCreateConfirm confirm

SRCreateConfirm SRCreate back

SRCreateConfirm SRCreateDone complete

Linking the Pages Together

3-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

7. Click Save to save the diagram. Your diagram should look like the following screenshot:

Defining Global Navigation Rules
Global navigation rules define the navigation paths that are available from all pages (typically
through the use of Help buttons and Logout icons). You don’t use the diagram to define these
paths; you use the Overview page (or Configuration Editor) instead.

To define global navigation rules, perform these steps:

1. Click the Overview tab at the bottom of the diagram page.

2. Select Navigation Rules on the top left of the page. The Navigation Rules box displays
the rules you just created in the diagram.

3. Click the New button on the right.

4. In the Create Navigation Rule dialog box, type the wildcard symbol *, and then click
OK.

Note: To create a “dogleg” in the line representing the navigation case,
click once at the point where you want the change of direction to occur.
You can add any number of doglegs to a navigation case.

 Linking the Pages Together

 Defining Page Flow and Navigation 3-9

5. Click the New button to the right of the Navigation Cases box.

6. Type /app/SRList.jspx in the To View ID field (the drop-down list is empty because
you have not yet created any pages). Type globalHome in the From Outcome field. Then
click OK. This identifies the SRList page as the home page , to which users can return
from any page in the application.

7. Create two more global rules as defined in the following table:

To View ID From Outcome
/app/staff/SRSearch.jspx globalSearch

/app/SRCreate.jspx globalCreate

8. Save your work

The completed Navigation Rules page should look like the following screenshot:

Summary
In this chapter, you created a page-flow diagram showing the pages of your application and the
links needed for users to navigate between them. To accomplish this, you performed the
following key tasks:

 Created a new page-flow diagram

 Created outline pages on the diagram

Linking the Pages Together

3-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

 Created navigation links between the pages

 Defined global navigation rules

Developing Application Standards 4-1

4
Developing Application Standards

This chapter discusses the role of standards in application development and demonstrates how to
implement them in the SRDemo application.

The chapter contains the following sections:

 Introduction

 Reusing Code

 Providing for Translation of the User Interface

 Providing a State Holder

 Creating a Standard Look and Feel

 Summary

Introduction

4-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
There are different sets of standards that need to be defined within each individual project, no
matter how small the project is. This includes ensuring a common look and feel across the user
interface, avoiding duplication of code where possible, and facilitating translation to other
languages. This chapter considers these types of standards in the context of the tutorial.

You perform the following key tasks:

 Creating utilities files to facilitate the reuse of code across the application

 Providing for translating the user interfaces into multiple languages

 Creating a basic template page to provide a standard look and feel for the application

Reusing Code
It makes sense, of course, to write code once and reuse it. To aid reuse in SRDemo, the
ADFUtils.java and JSFUtils.java files have been created to hold useful utilities that you may
need at points throughout the application. Both these files are provided with the tutorial.

Perform the following steps to create Java files in your application to hold this code:

1. In the Navigator, select the UserInterface project and then choose New from the context
menu.

2. In the New Gallery, select the General node in the Categories pane (if it is not already
selected), and in the Items pane choose Java Class. Click OK.

3. Type ADFUtils as the class name, and specify oracle.srdemo.view.util as the package
name. Ensure that the Extends field is set to java.lang.Object and leave the other fields
at their defaults. Click OK. The Code Editor opens and displays the code for the skeleton
class.

Note: If you did not successfully complete Chapter 3, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter4 to hold the starter application. If you
used the default settings, it should be in
<jdev-install>\jdev\mywork\Chapter4.

2. Unzip <tutorial-setup>\starterApplications\SRDemo-
EndOfChapter3.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev-install>\jdev\mywork\Chapter4\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 3.

Providing for Translation of the User Interface

Developing Application Standards 4-3

4. In Windows Explorer (or the equivalent if you are using another operating system),
navigate to the directory where you unzipped the tutorial setup files. Then open the
ADFUtils.java file (which you should find in the <ADFTutorialSetup>\files
directory).

5. Select all the text in the file and copy it.

6. In JDeveloper, delete the skeleton code from the ADFUtils.java file, and then paste the
contents of the clipboard into the file in its place. Save the file.

7. Examine the contents of the file. It holds a series of convenience functions for dealing
with ADF Bindings. Note that the red wavy lines under some lines of code in the file
indicate that the ADF Faces Runtime library is missing from the project. You add this
library later in the chapter.

8. Repeat these steps to create a second utilities file, JSFUtils.java. This file contains some
general static utilities.

The following screenshot shows how the two files should appear in the Navigator.

Providing for Translation of the User Interface
JavaServer Faces (JSF) makes the process of translating the user interface into multiple languages
relatively straightforward. Most of the strings used in the user interface of SRDemo are defined in
a single file, UIResources.properties. This is a flat text file containing name=value pairs,
where the name is an abstract identifier of a resource and the value is the actual value that is
displayed at run time. For example, srdemo.browserTitle=SRDemo Sample Application.

This kind of properties file makes maintenance of the UI simpler and also helps greatly with
translation. To translate the application, all you have to do is duplicate the properties file by
selecting File > Save As and saving with a file name with the appropriate suffix (for example,
UIResources_de for the German version). You then translate the values (leaving the names of the
resources the same). JSF inspects the browser locale information and automatically loads the
correct bundle at run time. If a resource is not found in the locale-specific bundle, JSF uses the
base bundle instead.

Providing a State Holder

4-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

For convenience, the UIResources file is supplied with the tutorial. Perform the following steps
to import the file into your JDeveloper project:

1. In the Navigator, select the UserInterface project, and then choose New from the context
menu.

2. In the New Gallery, select the General node in the Categories pane (if it is not already
selected), and then choose File in the Items pane. Click OK.

3. Name the file UIResources.properties and click OK.

JDeveloper creates a Resources node under the UserInterface project and places the
file there.

4. In Windows Explorer (or the equivalent in your operating system), navigate to the
directory where you unzipped the setup files. Open the UIResources.properties file (it
should be in the <tutorial_setup>\files directory), select all the text in the file, and
copy it to the clipboard.

5. In JDeveloper, paste the contents of the clipboard into the file and save it.

6. Examine some of the name=value pairs described above. You use them throughout your
pages. The following screenshot shows some examples:

Providing a State Holder
As you navigate between pages in the application, you need to track some values. These values
represent things like the current service request ID as you move from the SRList page to either
the SRMain or SREdit pages. You need to track which user the queries records are for on the
SRSearch page as you get ready to edit them.

In this section, you create a class to manage all the attributes needed to track the state of the

Providing a State Holder

Developing Application Standards 4-5

application. Then you create a managed bean to expose the methods to the pages. This bean is
used in later chapters to either set or retrieve values representing the state of the application.

Perform the following steps to create a Java class to define the attributes and hold the values
representing the state of the application:

1. Select the UserInterface project. From the context menu, select New.

2. In the New Gallery select the General category (if it is not already selected), and choose
Java Class in the Items pane. Click OK

3. Type UserSystemState as the class name and oracle.srdemo.view as the Package.
Leave all other fields at their defaults.

4. The basic class is created and ready for coding. To save time, open the
UserSystemState.txt file (found in the <tutorial_setup>\files directory or
wherever you unzipped the setup file) and copy its code. Then paste it into the newly
created class. Save your work.

The methods in this class are used to determine the specific information about the user who
is navigating through the application. As we discussed earlier, the information includes the
user ID, user status, current service request, and more. You need to expose the methods in
the class for them to be easily available to your application. You do that by creating a
managed bean, as described in the next steps.

5. If the faces-config.xml file is not already open, select UserInterface > Web Content >
WEB-INF in the Applications Navigator and then open the file.

6. Click the Overview tab to access the Managed Beans page.

7. With the Managed Beans category selected, click New.

8. In the Create Managed Bean pane, set the property values to those in the following table:

Field Value

Name userState

Class oracle.srdemo.view.UserSystemState

You may type the value or select it by clicking
the Browse button and expanding the
Hierarchy tab.

Scope session

Generate Class If It Does Not Exist Clear the check box.

9. The following screenshot depicts using the Hierarchy tab when defining the managed
bean class.

Creating a Standard Look and Feel

4-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

10. Click OK to continue.

You’re now ready to set and retrieve all the values you need to determine the state of the
application.

Creating a Standard Look and Feel
When developing Web applications, you can provide a consistent user experience by maintaining
a common look and feel (same use of color, same screen design and layout) and—more
importantly—by creating similar interaction behaviors. You can create a simple template that can
be used as the basis for each of the pages in the application. This can increase your productivity
as a developer because you do not need to “reinvent the wheel” for each page you build.

Perform the following steps to create a template that serves as the basis for developing all the
pages in the SRDemo application:

1. In the Navigator, select the UserInterface project, and then choose New from the context
menu.

2. In the New Gallery, expand the Web Tier node in the Categories pane (if it is not already
expanded) and choose JSF.

3. In the Items pane, choose JSF JSP and then click OK. The Create JSF JSP Wizard
launches.

4. Complete the first three steps of the wizard using the following values:

Wizard Step 1: JSP File

Field Value

File Name SRDemoTemplate.jspx

Directory Name This is the location where the file is stored. Ensure
that you create the page in the
<jdev_install>\SRDemo\UserInterface\public_htm
l\Template folder.

Type JSP Document

Creating a Standard Look and Feel

Developing Application Standards 4-7

Mobile Clear the check box.

5. Click Next.

Wizard Step 2: Component Binding

Field Value

Do Not Automatically Expose UI
Components in a Managed
Bean

Ensure that this option is selected.
(Because this is just the outline for the
pages you are going to develop later, you
choose not to create a managed bean for
the UI components at this point. Later,
when you create the detailed individual
pages, you create managed beans for the
pages' UI components.)

6. Click Next.

Wizard Step 3: Tag Libraries

Field Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

7. Click Finish

The empty page appears in the Visual Editor.

Adding Components to the Page
The next steps show you how to add components to the template page. The Component
Palette is used for creating components in the different visual editors.

The Component Palette comprises a number of palette pages. Each palette page contains a
logical grouping of components. For example, when you created the JSF navigation diagram,
the palette page contained JSF Page, JSF Navigation Case, Note, and Attachment. Those are
the items that are appropriate for a JSF navigation diagram.

In some cases there are multiple sets of components available. When that is the case, you
select the group of components that you want by clicking the list of palette pages on the
component palette.

The following screenshot shows some of the palette pages you use to create your JSF pages:

Creating a Standard Look and Feel

4-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

If the Component Palette is not visible, select View > Component Palette.

1. Select the ADF Faces Core page in the Component Palette, and then locate the PanelPage
component in the list.

2. Drag the PanelPage to the template in the Visual Editor.

3. In the Property Inspector, type Change me in the Title property. This title will be
modified appropriately for the pages you subsequently develop from the template page.

4. Add branding to the page as follows: Locate a directory called images in the
<ADFTutorialSetup>\files directory. Using Windows Explorer (or the equivalent in
your operating system), copy it to
<jdev_install>\jdev\mywork\SRDemo\UserInterface\public_html.

5. In the Application Navigator, select the Web Content folder and choose Refresh from
the View menu.

6. Locate the images node, expand it if it is not already expanded, and drag
SRBranding.gif to the “branding” facet at the upper left of the template page. In the
pop-up window, choose GraphicImage as the type of component to create.

In the next steps, you add a LoadBundle tag, which is used to help in the translation process
when internationalizing applications. The loadBundle tag identifies the resource bundle that
is used in the jspx pages of the application (that is, the UIResources.properties file you
copied in the previous section).

7. Select the JSF Core Component Palette page. Drag the LoadBundle component to the
Structure window, and drop it above <>afh:head.

8. In the Insert LoadBundle pop-up window, set the Basename to UIResources (or use […])
and click the Properties File radio button, to browse for the properties file. Remember
that the file is in <jdev_install>\jdev\mywork\SRDemo\UserInterface\. Set the Var
property to res (res is the page-scoped alias for the resource bundle, which can then be
used in Expression Language throughout the pages). Click OK.

9. Add copyright information as follows: In the Visual Editor (or Structure window), select
the appCopyright facet. A facet is a slot in the panelPage into which you can place a UI
component to provide a particular visual effect on the page. Right-click the facet and
choose Insert inside AppCopyright, and then choose OutputText from the context
menu.

Creating a Standard Look and Feel

Developing Application Standards 4-9

10. With af:outputText still selected in the Structure window, choose Properties from the
context menu. Click Bind to the right of the Value field.

11. In the “Bind to Data” dialog box, expand the JSP Objects node and then the res node in
the Variables tree.

12. Scroll down to locate srdemo.copyright. Select it and click > to shuttle it into the
Expression pane. Click OK, and then click OK again. (Alternatively, you can type
#{res['srdemo.copyright']} directly into the Value property in the Property
Inspector.)

The screenshot in the “Providing for Translation of the User Interface” section shows this
as one of the name=value pairs in the UIResources file.

13. Change the Escape property to false so that the © markup in the resource string is
printed as a correct copyright symbol.

14. Add an About link to provide information about the application as follows: Select the
appAbout facet in the Visual Editor. From the context menu, choose Insert inside
appAbout and then choose CommandLink.

15. Select the commandLink in the Structure window, and choose Properties from the
context menu.

16. In the CommandLink Properties dialog box, click Bind to the right of the Text property.

17. In the “Bind to Data” dialog expand JSP Objects and then res in the Variables tree.

18. Scroll to locate srdemo.about and click > to shuttle it into the Expression pane. Click OK,
and then click OK again. (Alternatively you can type #{res['srdemo.about']} in the
Text property in the Property Inspector.)

19. Set the Immediate property to true.

You use the Immediate property to shortcut the JSF lifecycle when you don't need the
data in the screen to be applied, as with a Help link (or here with the About button).

20. Add a label to display information about the currently logged-in user, as follows: Select
the InfoUser facet in the Structure window (expand the PanelPage facets node to locate
it), and from the context menu, choose Insert inside infoUser and then choose JSF
HTML. From the Insert JSF HTML Item dialog box, choose Output Format. Then click
OK.

Output Format is a standard JSF HTML tag and is used to display a localized message

21. In the Structure window, right-click h:outputFormat, and then choose Properties from
the context menu. In the Output Format Properties dialog box, click the Value Bind
button.

22. In the Bind to Data dialog box, expand the JSP Objects node and then the res node in the
Variables tree.

23. Scroll through the list to locate srdemo.connectedUser. Select it and click > to shuttle it
into the Expression pane. Click OK.

Creating a Standard Look and Feel

4-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

24. While still in the Output Format Properties window, click the Rendered Bind button,
and in the Expression field, type #{userInfo.authenticated}. Click OK, and then click
OK again.

The userInfo managed bean provides access to security information obtained from the
container security. Here you are checking that the current session is actually
authenticated. You have not yet created the userInfo managed bean; you do so in a later
chapter.

25. Define a parameter to pass in the name of the logged-in user, as follows: Right-click

h:outputFormat in the Structure window, and choose Insert inside
h:outputFormat Param from the context menu. In the Insert Param dialog box, type
#{userInfo.userName} in the Value field. Click OK.

26. Add contact information as follows: Locate the appPrivacy facet in the Structure
window. Then right-click and choose Insert inside appPrivacy CommandLink from
the context menu.

27. In the Property Inspector, type #{res['srdemo.contact']} in the Text property and
dialog:globalContact in the Action property. Note that this format (dialog:) is a
feature of ADF Faces and is not provided by the JSF specification.

28. Save SRDemoTemplate. Your template page should look like the following screenshot:

Summary

Developing Application Standards 4-11

Summary
In this chapter, you incorporated some standards into the SRDemo application. To accomplish
this, you performed the following key tasks:

 Created files to hold commonly used utilities

 Created a resources file to facilitate translation of the application’s UI

 Created a template page to provide a standard look and feel for application pages

Developing a Simple Display Page 5-1

5
Developing a Simple Display Page

This chapter describes how to create the SRList page, a simple display page at the center of the
SRDemo application that enables users to view information about service requests.

The chapter contains the following sections:

 Introduction

 Creating the Page Outline

 Adding User Interface Components to the Page

 Wiring Up the Edit Button

 Wiring Up the View Button

 Defining Refresh Behavior

 Adding a Menu Bar to the Page

 Adding a Drilldown Link

 Running the Page

 Summary

Introduction

5-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
The SRList page is at the center of the SRDemo application. It is the first page that users see after
logging in, and they can navigate from this page to all the other pages in the application.

Double-click the faces-config.xml file in the Navigator to revisit the page-flow diagram that
you created and see how the SRList page relates to the other pages.

Here are some points to note about the SRList page:

 The page displays each existing service request and its status.

 Any user (customer, technician, or manager) can access the page.

 When a customer logs in, all service requests pertaining to that customer are displayed.
A View button is available.

 When a technician logs in, all service requests assigned to that technician are displayed.
View and Edit buttons are available.

 The list of displayed requests can be filtered by clicking the second-level menu to show
one of the following: all service requests currently open, only requests with a status of
closed, or all requests irrespective of status. The default is requests that are open.

 Any user can select a service request and, by clicking the View button, go to the SRMain
page to update the history of that request. In addition, technicians can click the Edit
button to visit the SREdit page, where they can edit the request.

 To add a new request, any user can navigate to the SRCreate page by choosing the Create
New Service Request menu option.

 Technicians can navigate to the Search page (SRSearch) by using the Advanced Search
menu tab.

Note: If you did not successfully complete Chapter 4, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter5 to hold the starter
application. If you used the default settings, it should be in
<jdev-install>\jdev\mywork\Chapter5.

2. Unzip <tutorial-setup>\starterApplications\SRDemo-
EndOfChapter4.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application
workspace.

4. Select File > Open, and then select
<jdev-install>\jdev\mywork\Chapter5\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 4.

Creating the Page Outline

Developing a Simple Display Page 5-3

 Managers can see all service requests. All menu options are available to managers.

The following screenshot shows you how the finished SRList page should look:

To create the SRList page with the functionality and look-and-feel described in the preceding list
and screenshot, you now perform the following key tasks:

 Creating the page outline, based on the template page you created in Chapter 4

 Adding user interface components to the page

 Wiring up the View and Edit buttons

 Defining Refresh behavior

 Creating a menu bar to enable users to view service requests with different statuses or to
create a new service request

 Creating drilldown functionality to enable users to select a row in the table and navigate
to the SRMain page to add information for the selected service request

Creating the Page Outline
In this section, you create the SRList page and add the template to apply the appropriate look and
feel.

1. If it is not already open, double-click the faces-config.xml file to view the Page Flow
Diagram.

2. Double-click the SRList page to invoke the JSF Page Wizard.

3. Complete the first three steps of the wizard using the following values:

Adding User Interface Components to the Page

5-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wizard Step 1: JSP File

Field Value

File Name SRList.jspx

Directory Name

This is the location where the file is stored.
Ensure that you create the page in the
\SRDemo\UserInterface\public_html\app
folder.

Type JSP Document

 Clear the check box.

4. Click Next.

Wizard Step 2: Component Binding

Field Value

Automatically Expose UI
Components in a New Managed
Bean

Ensure that the option is selected.

Name backing_app_SRList

Class SRList

Package oracle.srdemo.userinterface.backing.

app

5. Click Finish to create the page details. The new SRList page is displayed in the Visual
Editor.

6. Open the SRDemoTemplate file if it is not already open. In the Structure window, shrink
the afh:html node and select it. From the context menu, choose Copy.

7. Click the tab to return to the SRList page, and in the Structure window expand the
f:view node.

8. Delete the html node. Then right-click f:view and choose Paste from the context menu.
The look and feel that you created earlier is now applied to the new page.

Adding User Interface Components to the Page
Perform the following steps to add some user-interface elements to the page:

1. Add a title to your page as follows: Click the page in the Visual Editor to select it.
(Alternatively, you can select af:panelPage in the Structure window.) In the Structure
window, choose Properties from the context menu.

2. In the PanelPage Properties dialog box, click Bind in the Title property.

3. In the Bind to Data dialog box, expand the JSP Objects node and then the res node in the
Variables tree.

Adding User Interface Components to the Page

Developing a Simple Display Page 5-5

4. Scroll through to locate srlist.pageTitle. Select it and shuttle it into the Expression pane.
Click OK, and then click OK again.

This is the name of the page title resource as defined in the UIResources.properties
file that you created in the preceding chapter. The value displayed at run time is the
actual title of the page.

5. Add a header to display in the browser title when you run the page, as follows:
In the Structure window, select afh:head. In the Property Inspector, set the Title
property to #{res['srdemo.browserTitle']}.

Note that you can set these values by invoking the Properties page and then the “Bind to
Data” dialog box, and then picking from the Variables tree as you did in the preceding
step. (Alternatively, you can type the value in the Property Inspector.)

6. You now add data to the page. The data is in the form of a read-only table based on the
findServiceRequests data collection. First, ensure that the Data Control Palette is visible
to the right of the Visual Editor. If it is not, choose Data Control Palette from the View
menu.

7. Expand the SRPublicFacadeLocal node, and then choose findServiceRequests(Integer,
String) ServiceRequests from the list of data collections.

8. Drag the collection to the structure window and drop it on the af:panelPage. From the
Create pop-up menu, choose Tables ADF Read-only Table.

9. In the Action Binding Editor, set the value of the filedBy parameter to
${userInfo.userId } and the value of the status parameter to
${userState.listMode }. Click OK.

Note: You haven’t yet created the userInfo class and managed bean; you do so in the
next chapter.

10. In the Edit Table Columns dialog box, reorder the columns so that svrId is at the top of
the list, followed by status, requestDate, problemDescription, and assignedDate. This
determines the order of the columns on the page. Make sure that the “Component to
Use” column has ADF Output Text set for every column. Select the Enable Selection
check box to add an option selection column to the table, and then click OK.

11. With the table selected in the Visual Editor, change the Id property in the Property
Inspector to srtable. Save the page. At this point, your page should look like the
following screenshot:

Wiring Up the Edit Button

5-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wiring Up the Edit Button
The SRList page provides a starting point for customers and technicians. From this page, users
can navigate either to an edit page or to a view page. The Edit button is available only when a
technician or manager logs in. Clicking this button takes users to the SREdit page, where details
of the currently selected service request can be modified.

Perform the following steps to change the default submit button to the Edit button.

1. Click the Submit button. In the Property Inspector, change the Text property to
#{res['srlist.buttonbar.edit']}.

This is the name of the button resource as defined in the UIResources.properties file.
The value displayed at run time is “Edit.”

2. Also in the Property Inspector, set the Id property to editButton.

Notice that JDeveloper searches all of the source code for uses of the original ID of this
button. It automatically changes all of those references to the new name.

3. You now specify that you want to display the Edit button only when the user who is
currently logged in is a member of staff, as follows: Select the Rendered property, and
then click the Bind to Data button in the toolbar of the Property Inspector (It is the
second button from the right; use the tooltips labels to check which button you need.)

Wiring Up the Edit Button

Developing a Simple Display Page 5-7

4. In the Rendered dialog box, type #{userInfo.staff} in the Expression field. Click OK.

(You have not yet created this class and managed bean; you do so in the next chapter.)
This is to verify that the logged-in user is indeed a member of staff.

5. Create a method in the backing bean that passes the ID of the currently selected service

request through to the Edit page, so that the appropriate record can be retrieved and
displayed. In the Visual Editor, double-click the Edit button to invoke the backing bean.

Wiring Up the Edit Button

5-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

6. In the Bind Action Property dialog box, click OK to add the editButton_action method
to the backing bean.

7. In editButton_action, you need to add code to set the service request ID to the current
row and return the name of the JSF navigation case that you want to use. When you set
the return to a navigation case name, JSF takes that value and forwards the user to the
end page of that navigation case. Add the following code to the editButton_action
method:
setCurrentSvrIdFromRow();
return "edit";

8. Because the setCurrentSvrIdFromRow method does not yet exist, JDeveloper will flag it
as a code error. Click the CodeAssist icon (the light bulb in the left margin) to create the
method.

9. Implement the setCurrentSvrIdFromRow method by adding the following code to the
method you just created. (Press [Alt] +[Enter] to import the appropriate package when
prompted by Code Assist.)

This code does two things:

 It retrieves the current row service request ID and stores it in the UserState
managed bean.

 It sets the navigation path to return to the SRList page on completion of the edit.

 FacesContext ctx = FacesContext.getCurrentInstance();

 JUCtrlValueBindingRef tableRowRef =
 (JUCtrlValueBindingRef) this.getSrtable().getRowData();

 Integer svrId =
 (Integer)tableRowRef.getRow().getAttribute("svrId");

UserSystemState.storeCurrentSvrID(svrId);

//Store away where we want to come back to

UserSystemState.storeReturnNavigationRule
 ("globalHome");

10. Still in the backing bean, add a new class variable as follows:
private BindingContainer bindings;

(Press [Alt] +[Enter] to import the oracle.binding package when prompted by Code
Assist.)

11. Because you are creating the page with auto-binding off, you need to add the bindings
manually in this step. Right-click bindings, and then select Generate Accessors from the
context menu. In the Generate Accessors menu, click OK to generate both setBindings
and getBindings methods.

12. Save the SRList.java file.

13. You click the page and select Run from the context menu to run the page. However, you
will see ”no rows yet” displayed in the table. This is because the page is based on the

Wiring Up the View Button

Developing a Simple Display Page 5-9

service requests for a specific logged-on user. You have not yet set the application to use
any type of logon, so the page does not return any rows.

Wiring Up the View Button
The View button is available to all users of the application, enabling them to navigate to the
SRMain page to update the history of a selected request.

Perform the following steps to specify the View button functionality:

1. Return to SRList.jspx in the Visual Editor.

2. Select the Edit button you just created.

3. Right-click and select Insert After Command Button Command Button from the
context menu.

4. In the Property Inspector, set the Text property to #{res['srlist.buttonbar.view']}
and the Id property to viewButton.

5. As with the Edit button, you need to create a method in the backing bean that specifies
exactly what must happen when the View button is clicked. Double-click the View
button to invoke the backing bean for the page. In the Bind Action Property dialog box,
click OK to add the viewButton_action method to the backing bean.

6. In the SRList.java file, add the following code to the viewButton_action() method:
return drillDown_action();

7. The drillDown_action method does not yet exist, so click the Code Assist icon to create
it.

This method again uses the setCurrentSvrIdFromRow method that you created in the
previous section. It passes the ID of the currently selected service request through to the
SRMain page, so that the appropriate record can be retrieved and displayed. You use this
method again at a later point in the page where you drill down on a service request.

8. Add the following code to the method to specify this behavior:
setCurrentSvrIdFromRow();
return "view";

9. Save the file.

Defining Refresh Behavior
Users can return to the SRList page from anywhere in the application. In the steps below, you
create the userState.refresh parameter to determine whether the List page needs to be
refreshed on returning from another page.

If you want to force the page to refresh (for example, when data has been updated), you set this
parameter in the UserState bean to True, and Expression Language then picks this up and
executes the queries on the List page. The exception to the refresh is if the page is invoked from a
JSF postback. A postback occurs when the page is being refreshed because of a user action on the
page. If this occurs, you do not need to force a refresh of the page.

Adding a Menu Bar to the Page

5-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Perform the following steps to specify refresh behavior for the page:

1. Return to the SRList page. In the Structure window, right-click af:panelPage and then
choose Go to Page Definition from the context menu.

2. In the Structure window, expand the SRListPageDef node if it is not already expanded.
Right-click executables, and then choose Insert inside executables invokeAction from
the context menu.

3. Set the ID to forceTableRefresh.

4. In the Binds field, click the arrow and choose findServiceRequests.

5. Click the Advanced Properties tab, and click […] in the RefreshCondition property.

6. In the Advanced Editor, copy the following line of code into the expression:
${(userState.refresh) and (!adfFacesContext.postback)}

This expression adds the proviso that if the page is called as part of a postback from this
same page, then a refresh should not take place.

7. Click OK, and then click OK again.

8. Save the page.

 Adding a Menu Bar to the Page
The SRList page has a set of menu options so that users can choose to view service requests with
a status of open, closed, or pending, or they can view all requests regardless of status. There is
also a link to create a new service request.

Perform the following steps to add these menu options to the page:

1. You first create a second-level menu bar to hold the menu options. In the Structure
window, expand the PanelPage facets node, and scroll down to menu2. Right-click, and
from the menu choose Insert inside menu2 MenuBar.

Adding a Menu Bar to the Page

Developing a Simple Display Page 5-11

2. In the Data Control Palette expand the SRPublicFacadeLocal node and select
findServiceRequests(Integer, String). Drag it to the Structure window onto af:menuBar.
In the Create pop-up menu, choose Methods ADF Command Link.

3. In the Property Inspector, type #{res['srlist.menubar.openLink']} in the Text
property.

4. Repeat step 2 an additional three times, creating a total of four menu options. Set the Text
property for each link as follows:
#{res['srlist.menubar.pendingLink']} #{res['srlist.menubar.closedLink']}
#{res['srlist.menubar.allRequests']}

5. Convert each of the command links to command menu items so that they appear as
options in the menu bar, as follows: Right-click each of the command links, and then
choose Convert from the menu. In the Convert CommandLink dialog box, select
CommandMenuItem and click OK to change these elements to menu items.

To make the selected tab appear highlighted, use Expression Language to check for the
status parameter being used for the links. There is a convenience function
(isListModeOpen) defined in the userState managed bean that you created in the
previous lesson.

To do this for requests with a status of open (the default), click in the Selected property
for the openLink menu item, and then click the Bind to Data button in the Property
Inspector toolbar (second button from the right). In the Selected dialog box, expand the
JSF Managed Beans node and then the userState node. From the list, choose
listModeOpen. Click > to shuttle it into the Expression pane. Then click OK.

Adding a Drilldown Link

5-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

6. Do the same for each of the other menu items, selecting values as defined in the
following table:

Menu Item Expression
Pending Requests #{userState.listModePending}

Closed Requests #{userState.listModeClosed}

All Requests #{userState.listModeAll}

Set an actionListener on the Open command link. ActionListeners fire when an event occurs
(for example, when the user clicks a link). When the actionListener fires with the
userState.listMode parameter set to Open (as you defined in step 6), service requests
with a status of Open are displayed.

7. In the Structure window, right-click first command menu item and, from the context
menu, choose Insert inside af:commandMenuItem - … ADF Faces Core In the Insert
ADF Faces Core Item dialog box, choose setActionListener. Then click OK.

8. In the Insert SetActionListener dialog box, set From* to #{'Open'}, and To* to
#{userState.listMode}.

(You can type in the value, or you can click the Bind button and, in the Bind to Data
dialog box, expand the JSF Managed Beans node and then the userState node. Select
listMode from the list, and shuttle it into the Expression pane. Click OK.)

9. Click OK. Set actionListeners inside each of the other three command menu items in the
same way, selecting values as defined in the following table:

Menu Item From* To*
Pending Requests #{'Pending'} #{userState.listMode}

Closed Requests #{'Closed'} #{userState.listMode}

All Requests #{'%'} #{userState.listMode}

10. Add a commandMenuItem to the menu bar to enable users to create a new service
request, as follows: Select the ADF Faces Core page in the Component Palette, and then
drag a CommandMenuItem to the menu bar.

11. In the Property Inspector, set the Text property to #{res['srlist.menubar.newLink']}
and set the Action property to create.

12. Save the page.

Adding a Drilldown Link
Now we add a link to the first column, enabling users to drill down on a service request and
navigate to the SRMain page, where they can add new information to it.

Perform the following steps to add a drilldown link to your page:

1. In the Data Control Palette, expand the findServiceRequests(Integer, String) node and
then the ServiceRequests node. Scroll down to find Operations and expand that node as
well.

Adding a Drilldown Link

Developing a Simple Display Page 5-13

2. In the list, select setCurrentRowWithKey and drag it to the svrId column of the table,
next to the existing text. From the pop-up menu, choose Operations ADF Command
Link.

3. In the Action Binding Editor, change the value of the parameter to the link from
${bindings.setCurrentRowWithKey} to #{row.rowKeyStr}. Then click OK.

Here, row is an index for the currently selected row, thus enabling you to get the key for
that row. This key value is then passed to the setCurrentRowWithKey method.
Therefore, the key value that the user selects by clicking the link is used to set the current
row, which is then the row that is displayed when the user is forwarded by the link to the
SRMain page.

4. Set the Text property of the command link to #{row.svrId} and set the Action property
to use the drillDown_action() method you created earlier in this chapter.

5. In the Structure window, delete the original af:outputText with label #{row.svrId}.

6. Save your page.

With the menu bar and drilldown link in place, the page should now look like the following
screenshot:

Running the Page

5-14 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Running the Page
Now that the page is finished, you can run it to see how it looks. With the SRList page open in the
Visual Editor, right-click and select Run. When the page is displayed, it should look like the
following screenshot:

Notice first that there is no data displayed. This is because you are running the SRList page
directly. When the page is run as part of the application as a whole, a user ID is passed into the
page from the logon so that service requests appropriate to the logged-on user can be displayed.
You create logon functionality in a later chapter.

Notice the various UI components that you added to the page; note the values picked up from
the UIResources file.

The menu tabs that you defined are displayed in the menu bar along the top of the page. You
added highlighted text to the selected request tab. Because Open is the default request status, the
Open Requests tab is bold.

The View and Edit buttons are not displayed. They appear when the table displays some data.

Summary
In this chapter, you created a display page to enable users of the SRDemo application to view
information about service requests. To accomplish this, you performed the following key tasks:

 Created an outline page based on the template page you defined in Chapter 4

 Added user interface components to the page to display service request information

 Added View and Edit buttons for navigating to other pages in the application

 Specified refresh behavior to enable users to see service requests when returning from
another page

 Added menuing to enable users to select a service request by status

 Created drilldown functionality to enable users to select a row in the table and navigate
to the SRMain page

Implementing Login Security 6-1

6
Implementing Login Security

This chapter describes how to build security for the SRDemo application. You first add
authentication, enabling you to log in as a default user and see data on your pages. You then
enable other users to access the application through their own user IDs and passwords.

The chapter contains the following sections:

 Introduction

 Creating a Class to Control Security

 Creating a Class to Manage Roles

 Creating a Class to Provide Authentication

 Integrating a User with the Application

 Setting Up Container Security

 Setting Up Application Access

 Summary

Introduction

6-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
You should implement both authentication and authorization in the environment where the
SRDemo application will run. Authentication determines which users get access to the
application, and it is controlled by the roles assigned to each user. Authorization controls what
type of behavior users are allowed to perform after they enter the application.

Security in SRDemo is based on J2EE container security. The available roles for the application
are (all lowercase): user, technician, and manager

In the security container, the remoteUser value (container userid) matches the e-mail password
in the application users table. The key security artifact is the UserInfo bean. This class reads the
container security attributes when it is first referenced and then makes the key information
available in a form that can be accessed via expression language.

For development purposes, test values for username and role can be injected into the userInfo
object through managed properties in the faces-config.xml file. These settings are ignored if
the application is deployed to a container that has security enabled, in which case the container
security information is returned.

In this chapter, you build the authentication and authorization for the application, including:

 A class to manage the login and the role of a user

 A class to provide authentication for the user

 A named query to find users by their e-mail IDs

 Registering users who are allowed to access the application

 Note: If you did not successfully complete Chapter 5, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter6 to hold the starter application. If you
used the default settings, it should be in
<jdev-install>\jdev\mywork\Chapter6.

2. Unzip <tutorial-setup>\starterApplications\SRDemo-
EndOfChapter5.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev-install>\jdev\mywork\Chapter6\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 5.

Creating a Class to Control Security

Implementing Login Security 6-3

Creating a Class to Control Security
The SRDemo application uses three core roles in determining who has access to perform what
type of function. Each user must be classified with one of the three roles: user, technician, or
manager. The default password for all users is welcome. All of these criteria are implemented
using container-managed BASIC authentication provided by Oracle Application Server 10g or
any other application server

The UserInfo bean is registered as a managed bean called userInfo that supports expressions
such as #{userInfo.userName}. It returns either the login ID or the string “Not Authenticated.”
The following table shows the expressions used in the UserInfo class and their values:

Expression Value

#{userInfo.userRole} Returns the current user’s role in its string value
(for example, manager)

#{userInfo.staff} Returns true if the user is a technician or manager

#{userInfo.customer} Returns true if the user is assigned a user role

#{userInfo.technician} Returns true if the user is assigned a technician role

#{userInfo.manager} Returns true if the user is assigned a manager role

The first set of tasks creates the containers you need and populates them with a test user and role.
In this way, you can test the application. In the second set of tasks, you define users and roles in
the Application Server, enabling users to log in with their own user IDs.

Creating a Class to Manage Roles
The first task is to create a class that contains the code needed to validate users, and to determine
the available roles.

1. In the Applications Navigator, expand the UserInterface project. Right-click the
Application Sources node and select New.

2. From the New Gallery, select the Java Class item from the General category.

3. Use the following table to populate the values in the Create Java Class pane:

Field Value

Name UserInfo

Package oracle.srdemo.view

Extends Java.lang.Object

Public (Attribute) Select the check box.

Generate Default Constructor Select the check box.

Generate Main Method Clear the check box.

Creating a Class to Provide Authentication

6-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

4. The basic class is created and ready for coding. To save time, open the UserInfo.java
file (found in the <tutorial-setup>\files\ directory or wherever you unzipped the
ADFTutorialSetup file) and copy its code. Then paste it into the newly created class,
replacing the generated code.

5. Click Save to save the file.

Creating a Class to Provide Authentication
The next task is to create and populate the managed bean. In this section, you create the
userInfo managed bean, which enables the JSF pages to access the UserInfo.java class.

1. If the faces-config.xml file is not already open, right-click UserInterface and select
Open JSF Navigation.

2. Click the Overview tab to expose a list of all the managed beans. You’ll see a managed
bean for each of the pages you created.

3. With the Managed Beans category selected, click New.

4. In the Create Managed Bean pane, set the property values to those in the following table:

Field Value

Name userInfo

Class oracle.srdemo.view.UserInfo

Type the value or select it by clicking the ellipsis
(...) and expanding the Hierarchy tab.

Scope session

Generate Class If It Does Not Exist Select the check box.

5. Click OK to continue.

6. In the Structure window, right-click the new userInfo managed bean. Select Insert inside
managed bean | managed-property. This step enables you to log on during testing with
a default username. Use the following table to populate the required values:

Creating a Class to Provide Authentication

Implementing Login Security 6-5

Field Value

Name userName

Class java.lang.String

Type the value or select it by clicking the
ellipsis (...) and expanding the Hierarchy tab.

7. Click OK to continue.

8. Create another managed-property inside the userInfo managed bean. Use the following
table to populate the required values:

Field Value

Name userRole

Class java.lang.String

Type the value or select it by clicking the
ellipsis (...) and expanding the Hierarchy tab.

9. Click OK to continue. Your Structure window should look like the following screenshot:

10. For testing purposes, double-click the userName managed-property and set the Value

property to sking. Then click OK.

11. For testing purposes, double-click the userRole managed-property and set the Value
property to manager. Then click OK.

12. Click the Source tab and examine the new code. Notice that the managed properties have
been populated with your values.

Integrating a User with the Application

6-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

You have now added a user so that the pages can run and be populated with data. This is
sufficient for testing purposes, but eventually you will need to provide security for the
application.

Integrating a User with the Application
When you deploy the application, you will want to enable users to provide their own information
and have that information recorded. The application then needs to be aware of who is logged in
so that it can decide what menus and functionality to provide. The user’s e-mail ID is passed
from the security container to the application to control the type of access available to the user
(for example, access to the SRList and SRCreate pages).

Creating a Named Query to Manage Users
You can identify the user who logs in to the application through a named query. The query is
read-only and takes a String parameter containing the e-mail ID. This query returns a user object
for a particular e-mail ID received from the container security. You now create a named query in
the Users descriptor of the DataModel TopLink SRMap file.

1. Create a named query for the Users descriptor. The query is based on the e-mail ID and
receives its value from the security container. Use the values in the following table. (For
the detailed steps to create the query see chapter 2.)

Field Value

Named Query
Name

findUserByEmail

Type ReadObjectQuery

Parameter Type java.lang.String

Parameter Name emailParam

Integrating a User with the Application

Implementing Login Security 6-7

2. Create an expression for the named query. Use the values in the following table to
complete the definition:

Field Value

First Argument Query
Key

email

Operator EQUAL

Second Argument -
Parameter

emailParam

You have just declaratively created named query and now need to create the method in the
session bean. You now include the method to retrieve the e-mail ID.

3. Convert the named query into a method to expose the value to the application. Expand
the DataModel Application Sources oracle.srdemo.datamodel nodes.

4. Right-click the EJB Session bean and select Edit Session Facade to add the new query to
the bean. Expand the Users node and select the check box in front of the public Users
findUserByEmail(String emailParam). Click OK.

5. Click Save All to save your work.

6. In the Applications Navigator, select the SRPublicFacadeBean.java node and, from the
context menu, select Create Data Controls.

This action pushes the current EJB forward to update the existing data control. The Data
Control palette updates to include controls for any newly added methods.

Exposing the User E-mail ID to the Application
You now create a method to expose the TopLink Java object to the outside world. After the value
is exposed, it can be used elsewhere in the application. You create an XML file to allow all the JSF
pages to access the user IDs.

1. Create an XML file to contain the method. Expand the UserInterface Application
Sources oracle.srdemo.userInterface pageDef nodes, right-click, and select New.

2. Select XML from the General category and XML Document from the Items pane.

3. In the pop-up menu, name the file userInfo.xml and ensure that the directory includes
your page definition path
(…SRDemo\UserInterface\src\oracle\srdemo\userInterface\pageDefs).

4. Copy the code in the userInfo.xml file, which is found in your <tutorial-
setup>\files directory. Replace the existing code with the code from the file. The code
defining the UserInfo.xml file is stored with the other page definition packages and
uses the findUserByEmail method in the SRPublicFacade session bean.

5. Close and reopen JDeveloper to get JDeveloper to recognize userInfo.xml as a page
definition.

In addition to the XML definition, you need to be able to access it by name (UserInfo) from

Integrating a User with the Application

6-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

DataBindings.cpx. The DataBindings.cpx file is created the first time you open a Web
page from the Page Flow Diagram in the HTML Visual Editor. The .cpx file defines the
Oracle ADF binding context for the entire application. The .cpx file provides the metadata
from which the Oracle ADF binding objects are created at run time. The binding context
provides access to the bindings across the entire application. You can edit this file in the
Property Inspector to add or remove parameters and to alter the binding container settings.
This can be done from the Structure window with the data bindings file:

6. Expand the UserInterface Application Sources oracle.srdemo.userInteface nodes,
and then select the DataBinding.cpx node.

7. In the Structure window, select the pageDefintionUsages node, and then choose Insert
inside pageDefinitionUsages| page.

8. In the Insert page pop-up menu, set the ID to UserInfo and set the path to
oracle.srdemo.userinterface.pageDefs.userInfo. Click OK to continue.

At run time, a reference to data.UserInfo now resolves to this binding definition,
allowing the page to access the UserInfo class.

In the next steps, you assign a value to a managed property to point the userInfo.xml file
you just created. This enables the managed bean to accept values from the return of the
findUserByEmail named query.

9. In the Visual Editor, open the faces-config.xml file. Then click the Overview subtab
and select the userInfo managed bean. Create a New Managed Property called
bindings. The binding allows any reference to find the correct userInfo.

10. After it is created, double-click the bindings property and set the value property to
#{data.UserInfo}. The following screenshot shows all the managed properties for the
userInfo bean and the value for the bindings property:

Setting Up Container Security

Implementing Login Security 6-9

Setting Up Container Security
For users to be authenticated, they need to be registered in the JAZN-based security system of the
J2EE container. Perform the following steps to register roles, usernames, and credentials in the
jazn-data.xml file.

1. If its running, stop the OC4J Server by selecting Run > Terminate >| OC4J.

2. Navigate to Tools > Embedded OC4J Server Preferences.

3. Drill down through Current Workspace(SRDemo) > Authentication(JAZN) > Realms.

4. If the jazn.com realm does not exist, click the New button and name the new realm
jazn.com.

The realm is the general component of the security. The SRDemo component added later
is a way to use the realm. In this way, you can use the same realm for many different
applications.

5. Select the Roles node, and then click the Add button.

6. Create three roles: user, technician, and manager.

7. Create users with the values in the following table. Use the credential welcome
throughout, and keep the usernames all lowercase. Then assign the usernames to their
roles by selecting a role and clicking the Member Users tab. Assign each user to the
corresponding role on the Selected side.

Username Role

sking manager

nkochhar user

ghimuro user

ahunold technician

bernst technician

dfaviet user

jchen user

The following screenshot shows the members assigned to the user role:

Setting Up Application Access

6-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

All of the data you entered is kept in a file at the root directory of the application. The
convention used to name the file is <applicationName>-jazn-data.xml. In the tutorial,
the file is named SRDemo-jazn-data.xml.

Setting Up Application Access
In this section, you define which roles that get access to which directory structures in the
application.

1. In the Applications Navigator, expand the UserInterface Web Content WEB-INF
nodes and select web.xml. Select Properties from the context menu.

2. Scroll down the left pane and select the Login Configuration node. Select the HTTP
Basic Authentication option, and then set the Realm property to SRDemo.

Setting Up Application Access

Implementing Login Security 6-11

3. Select the Security Roles node and add the same three roles as before: user, technician,
and manager. (Click Add for each role you need to add).

Now that you have defined the security roles, they need to be assigned to security constraints
to enforce the authorization.

4. Select the Security Constraints node and click New. On the Web Resources tab, click
Add and specify AllManagers as the Web Resource Name. Click OK.

5. With the AllManagers collection selected, click the Add button in the lower pane on the
right side of the URL Patterns tab. In the Create URL Pattern pop-up window, enter
faces/app/management/*. This enables all managers to access any files in the
management directory.

6. With the AllManagers collection selected, click the Authorization tab and select the
manager check box.

7. Create two more security constraints using the values in the following table:

Web Resource Collections URL Patterns Authorization

AllStaff faces/app/staff/* technician and manager

AllUsers faces/app/* user, technician, and manager

8. Click OK to close the Web Application Deployment Descriptor dialog box.

When you finish this step, there should be three constraint entries under the Security
Constraints node in the structure window. Each constraint entry corresponds to one of
the collections from the preceding table. With the web.xml file open in the editor, the
Structure window should show all the constraints, as in the following screenshot:

Summary

6-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

9. With the SRList page open in the Visual Editor, right-click and select Run. When
prompted, enter bernst as the username and welcome as the password. You should see
service requests appear in the list. Select some of the menu options for Open, Pending,
and Closed requests.

Summary
In this chapter, you provided security for the SRDemo application. To accomplish this, you
performed the following key tasks:

 Created a container to control security

 Created a class to manage roles

 Created a class to provide authentication

 Integrated a user with the application

 Exposed the user e-mail ID to the application

 Set up container security

 Set up application access

Developing a Search Page 7-1

7
Developing a Search Page

This chapter describes how to build the Search page using JavaServer Faces and ADF
components. The page contains two sections: one to specify the query criteria and the other to
display the results. You create buttons enabling the user to select a record and to view or edit the
record.

The chapter contains the following sections:

 Introduction

 Creating the Search Page

 Adding Data Components to the Search Page

 Modifying the Default Behavior of a Query

 Wiring Up the Edit Button

 Wiring Up the View Button

 Summary

Introduction

7-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
The SRSearch page provides a query-by-example screen for technicians and managers to search
the entire list of service requests. The page is divided into two areas: a query area at the top
(which is always in query mode) and a results area in the form of a table (which displays the
results of the last search).

Use the page-flow diagram to see how the search page fits in the application. Here are some
points to note about the page:

 The returned records appear on the same page as the query area.

 The page is always in query mode.

 The returned records can be selected and then viewed or edited.

 Only managers can view all records; others can view only their own records.

Creating the Search Page
The first task in creating the Search page is to build its structure using ADF Components and
then adding the data component from the data model.

Note: Earlier in the tutorial, you created the page outline in the page-flow diagram.
Now you complete the page and apply the template that you created in Chapter 4.
You could also create the page from the New Gallery by using the JSF JSP item.

Perform the following steps to create the SRSearch page and attach the template that you created
earlier:

1. If it is not open, double-click the faces-config.xml file to view the page-flow diagram.

Note: If you did not successfully complete Chapter 6, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter7 to hold the starter application. If you
used the default settings, it should be in
<jdev_install>\jdev\mywork\Chapter7.

2. Unzip <tutorial_setup>\starterApplications\SRDemo-
EndOfChapter6.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev_install>\jdev\mywork\Chapter7\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 6.

Creating the Search Page

Developing a Search Page 7-3

2. Double-click the SRSearch page to invoke the JSF Page Wizard.

3. Complete the wizard using the following values:

Wizard Step 1: JSP File

Field Value

File Name SRSearch.jspx

Directory Name This is the location where the file is to be stored. Append
\app\staff to the default values, placing the file in its
own subdirectory. The directory should be
<jdev_install>\jdev\mywork\SRDemo\UserInterface\

public_html\app\staff.

Type JSP Document

Mobile Clear the check box.

4. Click Next to continue.

Wizard Step 2: Component
Binding

Field Value

Automatically Expose UI
Components in a New
Managed
Bean

Ensure that this option is selected.

Name backing_app_staff_SRSearch

Class SRSearch

Package oracle.srdemo.userinterface.backing.app.staff

5. Click Next to continue.

Wizard Step 3: Tag Libraries

Field Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

6. Click Finish to create the page details. The new SRSearch page is displayed in the Visual
Editor.

Creating the Search Page

7-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

7. Open the SRDemoTemplate file if it is not already open. In the Structure window, right-
click the afh:html node and choose Copy from the shortcut menu.

8. Click the tab to return to the SRSearch page. In the Structure window, expand the f:view
node.

9. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.

10. The main image doesn't appear; you need to change the path. Select the image and then,
in the Property Inspector, reset the URL property to /images/SRBranding.

11. Double-click afh:head and set the Title property to SRDemo Search. The value of this
property becomes the browser title.

12. The Visual Editor now displays the SRSearch page with the look and feel of the other
pages:

Creating a Named Query
The search form uses a named query that is based on ServiceRequests and accepts two
parameters.

1. In the Applications Navigator, select the SRMap node in the DataModel project. The
structure of the SRMap is displayed in the Structure window:

Creating the Search Page

Developing a Search Page 7-5

2. Double-click the ServiceRequests node, and then click the Queries tab. Click the Add
button to create a new named query.

3. In the Add TopLink Named Query pane, type searchServiceRequests as the name of
the new query. Click OK to continue.

4. With the searchServicesRequests named query selected, click the General tab. In the
Parameters area of the editor, click the Add button.

5. In the Class Browser window, click the Search tab. This is where you define the
parameter type.

6. Enter java.lang.String as the Match Class Name property. As you type, the list
becomes more refined. When the java.lang.String matching class is highlighted, click
OK to define the type.

7. In the Parameters area, change the parameter name to descr.

8. Create a second parameter of java.lang.String and name it status.

Creating the Query Expression
Now that you have defined two parameters (descr and status), you need to define an
expression using them. This expression defines how the parameter is associated with an
attribute in the named query. The expression is evaluated at run time to determine the rows
returned by the named query.

1. With the searchServiceRequests named query selected, click the Format tab and then
click the Edit button in the Parameters area of the editor.

2. In the Expression Builder, click Add to create a new expression.

3. In the First Argument area of the expression, click Edit. In the Choose Query Key pane,
select problemDescription.

4. Click OK to continue.

Creating the Search Page

7-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

5. Back in the Expression Builder, set the Operator to LIKE IGNORE CASE, and set the
Second Argument to the descr parameter that you created earlier. It should look like the
following screenshot. Click OK to continue.

6. Next, add a second expression. Click the Add button to add a new expression. Set the

expression component to the values in the following table:

Field First Argument Operator Second Argument
(parameter)

Second
Component

status LIKE IGNORE

CASE

status

When complete, your expression should look like the following. Confirm your results,
make changes if necessary, and click OK when done.

7. Save your work

Re-creating the DataControl
The last part of creating this named query is adding it to the data controls. Because you have
added code to some of the session bean methods, you need to make sure you don’t override
them as you re-create the data control.

1. Right-click SRPublicFacadeBean.java in the Applications Navigator and select Edit
Session Facade from the context menu.

2. Expand ServiceRequests and make sure the new named query searchServiceRequests is
selected.

3. Click OK

Adding Data Components to the Search Page

Developing a Search Page 7-7

4. Right-click SRPublicFacadeBean.java in the Applications Navigator and select Create
Data Control from the context menu.

5. In the Data Control pane, you now see searchServiceRequests(String, String).

Adding Data Components to the Search Page
In this section, you modify the SRSearch page to display a different title and include data-bound
controls. In most cases where you define titles and prompts, you reference the values defined in
the data model rather than hard-coding them in the page. As a result, if the model’s prompts or
titles change, then these updated values are used at run time.

1. Click the SRSearch.jspx tab and, in the Structure window, expand the
f:view afh.html afh.body h:form nodes to expose af:panelPage.

2. Double-click af:panelPage and, in the properties, set the Title field to
#{res['srsearch.pageTitle']}.

This value is set in the template, so you could refer to the res variable when the template
is first used or on each page that uses the template. You could set this property to the
literal text you want for the title. We are setting it to a value in the
UIResources.properties file, which contains a list of paired properties and values. At
run time, this file is read and the values are replaced on the page. Throughout the
tutorial, you use this convention for button names, page titles, and field prompts. At run
time, the value should be ”Find a Service Request.”

3. If you click the Source tab in the Editor, you see the code. The following screenshot
shows the source code for this step:

4. Click the Design tab to see the changes.

5. In the component palette, open the ADF Faces Core page and drag a PanelBox to the
af:panelPage in the structure window. This action creates a placeholder for the query
component of the page.

You now add a Parameter Form that uses the searchServiceRequests named query. On the
Data Controls tab, expand the SRPublicFacadeLocal control, and locate
searchServiceRequests(String, String).

6. Select searchServiceRequests(String, String) and drag it to af:panelBox. Select
Parameters| ADF Parameter Form from the context menu. Click OK in the Edit Form
Fields dialog box to accept the defaults. These actions add a form with two fields and a
search button.

Adding Data Components to the Search Page

7-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

7. Change the searchServiceRequests button’s Text property to use the resource
#{res['srsearch.searchLabel']}.

8. Change the Label property of the description af:inputText component to
‘Description:’.

9. Change the Label property of the status af:inputText component to ‘Status:'.

Adding Data Components
In the next few steps, you create the area and data components to display the results of the
query:

1. In the Data Control palette, expand searchServiceRequests and drag the subnode
ServiceRequests to the af:panelPage.

2. In the pop-up menu, select Tables|ADF Read-only Table.

This table displays the search results. You see the Edit Table Columns window, where
you can change the display label, the binding value, and the type of component used to
display it. The default values originate from those defined in the data model.

3. Select the Enable selection check box and accept the defaults. Click OK to continue..

4. In the Structure window, expand the af:table node and reorder the columns of the table
to srvId, problemDescription, status, requestDate, and assignedDate.

Adding Data Components to the Search Page

Developing a Search Page 7-9

As you select the node in the Structure window, the Visual Editor displays the column so
that you can view the completed column definition.

5. In the Structure window, expand the af:table Table facets selection, and double-
click the af:tableSelectOne node. Change the hard-coded default Text property to the
resource string #{res['srsearch.resultsTable.prefix']}. This action changes the
column’s label to Results as defined in the UIResources.properties file.

6. With the af:table selected in the structure window, change the Id property to srtable.

7. Delete the Submit button.

8. Save the page.

9. From the ADF Faces Core drop-down menu of the Component palette, drag two ADF
Faces Core CommandButtons into the af:tableSelectOne node.

10. Select each af:commandButton and change the Text property to the values in the
following table.

This action associates each button with one of the two functions you want it to carry out:
edit or view. Both of the values in the following table are defined in the
UIResources.properties file.

Command Button Value

1 #{res['srsearch.resultsTable.edit']}

2 #{res['srsearch.resultsTable.view']}

Modifying the Default Behavior of the Query
The default behavior of the parameter form is to simply accept the values the user enters and
execute the query. Which means the user must put a value or a wildcard in each of the fields
for the query to return results. That is probably fine if it is a two-field form, but more than
that would present usability issues to users.

In this section, you add some Expression Language (EL) to the page-definition parameters
that will insert a wildcard if the user doesn’t enter a value in the field. You add this code to
each of the parameters so that the can enter either or both parameters.

1. Select the page definition for the SRSearch page in the Applications Navigator.

2. In the Structure window, expand bindings searchServiceRequests.

3. Double-click the descr property.

4. For the NDValue in the NamedData Properties dialog box, click the (…) button
(browse/edit).

The expression is what populates the parameter before it is passed to the query for
execution. By default, the parameter is populated from the related field on the parameter
form. The code you are about to add checks for a value and returns a wildcard ("%") if
the parameter is either null or blank.

5. Replace the default expression for descr with the following code:

Adding Data Components to the Search Page

7-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

${((bindings.searchServiceRequests_descr == null) ||
(bindings.searchServiceRequests_descr == '')) ? '%' :
bindings.searchServiceRequests_descr }

The preceding code tests descr for null and for blank (''). If either is true, the expression
returns a wildard ('%'). If descr is not null, the expression returns the value that the user
entered.

6. Click OK to accept the changes. Click OK again to close the dialog box.

7. Double-click the status property

8. For the NDValue in the Named Data Properties dialog box, click the (…) button
(browse/edit).

9. Replace the default expression for status with the following code:
${((bindings.searchServiceRequests_status == null) ||
(bindings.searchServiceRequests_status == '')) ? '%' :
bindings.searchServiceRequests_status }

10. Right-click anywhere on the page and select Run. When prompted, enter sking as the
username and welcome as the password.

11. Click the search button without entering values in either of the fields. The result should
show all the service requests.

12. Enter open in the status field and click search. The result should be all the Open service
requests.

13. Enter a value in the description field (for example, "%wash%"), and then click search. You
should now see the rows with "wash" somewhere in the description with a status of open.

14. Clear the status field and click search. You should now see all the rows with "wash"
somewhere in the description.

Adding a Refresh Condition
When you first ran the page, the query was executed when the page was loaded. Because you
added the code to substitute wildcards for null values, the initial query returns and displays
all rows.

In the final few steps, you add a refresh condition that keeps the form from executing the
query until the user clicks the search button.

1. Select the page definition for the SRSearch page in the Applications Navigator.

2. In the Structure pane, expand executables.

3. Click searchServiceRequestsIter.

4. In the Properties Inspector, change the RefreshCondition to
${adfFacesContext.postback}.

5. Right-click anywhere on the page and select Run.

6. Notice that the detail table does not display any rows until you click search.

Wiring Up the Edit Button

Developing a Search Page 7-11

Wiring Up the Edit Button
The next two steps are the same as those when you created the SRList page. The Edit button is
available only when a technician or manager logs in. Clicking the button takes users to the SREdit
screen, where service request details can be modified.

Perform the following steps to specify the Edit button functionality:

1. Click the edit button. In the Property Inspector, set the Id property to editButton.

2. Specify that you want to display the Edit button only when the user who is currently
logged in is a member of staff. Select the Rendered property, and click the Bind to Data
button in the toolbar of the Property Inspector (it is the second button from the right; use
the tooltips labels to check which button you need).

3. In the Rendered dialog box, type #{userInfo.staff} in the Expression field. Click OK.

This is to verify that the logged-in user is indeed a member of staff.

Wiring Up the View Button

7-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Adding Backing Bean Code
Create a method in the backing bean that passes the ID of the currently selected service
request through to the Edit page, so that the appropriate record can be retrieved and
displayed.

1. In the Visual Editor, double-click the Edit button to invoke the backing bean.

2. In the Bind Action Property dialog box, click OK to add the editButton_action method
to the backing bean. In the backing bean file, replace the generated code in the
editButtonAction method with the following code to specify its navigation path.
setCurrentSvrIdFromRow();
return "edit";

3. The setCurrentSvrIdFromRow method does not yet exist. Click the CodeAssist icon (the
light bulb in the left margin) to create it.

4. Implement the setCurrentSvrIdFromRow method by adding the following code:

FacesContext ctx = FacesContext.getCurrentInstance();

JUCtrlValueBindingRef tableRowRef =
 (JUCtrlValueBindingRef)this.getSrtable().getRowData();

Integer svrId =
(Integer)tableRowRef.getRow().getAttribute("svrId");

UserSystemState.storeCurrentSvrID(svrId);

//Store away where we want to come back to

UserSystemState.storeReturnNavigationRule
("GlobalHome");

This code does two things:

 It extracts the service request ID and stores it in the UserState managed bean.

 It sets the navigation path to return to the SRList page on completion of the edit.

5. Still in the backing bean, add a new class variable as follows:
private BindingContainer bindings;

(Press [Alt] +[Enter] to import the package oracle.binding when prompted by Code
Assist.)

6. Right-click bindings, and select Generate Accessors from the context menu. In the Generate
Accessors menu, click OK to generate both the setBindings and the getBindings methods.

7. Save the SRSearch.java file.

Wiring Up the View Button
The View button is available to all users of the application, enabling them to navigate to the
SRMain page to update the history of a selected request.

Wiring Up the View Button

Developing a Search Page 7-13

Perform the following steps to specify the View button functionality:

1. Return to SRSearch.jspx in the Visual Editor and select the second Command Button
(the view button).

2. In the Property Inspector, set the Id property to viewButton.

3. As with the Edit button, you need to create a method in the backing bean that specifies
exactly what must happen when the View button is clicked. Double-click the View
button to invoke the backing bean for the page. In the Bind Action Property dialog box,
click OK to add the viewButton_action method to the backing bean.

4. In the SRList.java file, replace the generated code in the viewButton_action()
method with the following code:

return drillDown_action();

5. As before, click the Code Assist button to create the drillDown_action method.

This method again uses the setCurrentSvrIdFromRow method that you created in the
previous section. It passes the ID of the currently selected service request through to the
SRMain page, so that the appropriate record can be retrieved and displayed.

6. Add the following code below the method to specify this behavior:
setCurrentSvrIdFromRow();
return "view";

7. Save the file.

Now that the page is completed, you can run it and examine the functionality.

8. With the SRSearch page open in the Visual Editor, right-click and select Run. When
prompted, enter bernst as the username and welcome as the password. Test the search
function. (Note: You are unable to use the View and Edit buttons until you complete the
SRMain and SREdit pages in later chapters).

The page should look something like the following.

Wiring Up the View Button

7-14 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Summary
In this chapter, you built the Search page using JavaServer Faces and ADF components. To
accomplish this, you performed the following key tasks:

 Created the Search page

 Added data components to the Search page

 Wired up the View and Edit buttons

 Modified the default behavior of a query

Developing a Master-Detail Page 8-1

8
Developing a Master-Detail Page

In this chapter, you develop a master-detail page that shows a service request and its Service
Request History rows. From this page, users can see the scope and history of a service request.
They can also add detailed notes to the service request.

The chapter contains the following sections:

 Introduction

 Developing the Basic UI

 Adding Service Request Components

 Adding the Notes Panel

 Adding the Service Histories Panel

 Summary

Introduction

8-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
The SRMain page provides a master-detail view of service requests and their Service Request
History rows. The page contains three component areas: the read-only Service Request form, the
Notes input area, and the Service Request History table.

You perform the following key tasks in this chapter:

 Create the Service Request read-only form

 Create the Notes input form and add code to programmatically set data values from
parameters

 Add the Service Request History table

Developing the Basic UI
In the first part of this chapter, you create the SRMain page and add the basic UI components.
These are the layout components that you will use to hold the data-aware components that
you add later.

Perform the following steps to create the SRMain page and copy the template you created
earlier into this page:

1. If it is not open, double-click the faces-config.xml file to view the page-flow diagram.

2. Double-click the /app/SRMain.jspx page to invoke the JSF Page Wizard.

3. Ensure that the values for the first three steps of the wizard match those in the following
tables:

Note: If you did not successfully complete Chapter 7, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter8 to hold the starter application. If you
used the default settings, it should be in
<jdev_install>\jdev\mywork\Chapter8.

2. Unzip <tutorial_setup>\starterApplications\SRDemo-
EndOfChapter7.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev_install>\jdev\mywork\Chapter8\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 7.

Introduction

Developing a Master-Detail Page 8-3

4. Click Next to continue.

5. Click Next to continue.

6. Click Finish to create the page details. The new SRMain page is displayed in the Visual
Editor.

7. Open SRDemoTemplate.jspx in the Visual Editor (if it is not already open). In the
Structure window, shrink the afh:html node and select it. From the shortcut menu,
choose Copy.

8. Click the tab to return to the SRMain page, and in the Structure window select f:view
node.

7. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.
The look and feel that you created earlier is now applied to the new page.

Your page should now look like the following:

Wizard Step 1: JSP File

Field Value

File Name SRMain.jspx

Directory Name The directory name should be “…public_html\app.”

Type JSP Document

Mobile Clear the check box.

Wizard Step 2: Component Binding

Field Value

Automatically Expose UI
Components in a New Managed Bean

Ensure that this option is selected.

Name backing_app_SRMain

Class SRMain

Package oracle.srdemo.userinterface.backin

g.app

Wizard Step 3: Tag Libraries

Field Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

Adding Service Request Components

8-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Adding Service Request Components
Now that you have created the basic page, you can begin to add data-aware components that
display the service request data.

You first need to add some ADF Layout components that help with the alignment and format of
the page. You now add an ADF tableLayout component with three rowLayout components; each
of the rowLayout components will hold a section of this page.

1. Select an ADF Faces HTML TableLayout component and drag it to af:panelPage in
the Structure pane.

This component is like an HTML table except that it can be manipulated
programmatically using the backing bean. For example, you can set the Rendered
property to false, which disables the display of this table and all of its components.

2. Add an ADF Faces HTML RowLayout component and drag it to the
afh:tableLayout component that you just added. This component provides a layout
object and (like the tableLayout component) can be changed programmatically.

3. Repeat the previous step to add a second and third rowLayout component.

The Structure window should now look like the following screenshot:

Adding Service Request Components

Developing a Master-Detail Page 8-5

Adding Data-aware Components
Perform the following steps to add an ADF data-aware component to display service
requests:

1. Click the SRMain.jspx tab in the Visual Editor to open the page again.

2. Select the Data Controls palette and expand the SRPublicFacadeLocal node.

3. Drag the result collection of findServiceRequestById(Integer) to the first
afh:rowLayout in the Structure window as an ADF Read-only Form. The collection is
the node under the method name.

4. In the Edit Form Fields dialog box, change the problemDescription column to use an

ADF Input Text w/Label component. Click in the Component To Use column next to
problemDescription and select ADF Input Text w/Label. This changes the
problemDescription field to a browser input text widget. You can then change display
properties such as height and width. Click OK.

5. In the Action Binding Editor, enter a default value for the findSvrID parameter. The
Value property determines the source of the parameter. Use the EL browser (…) to pick
${userState.currentSvrId} from the JSF Managed Beans node. Click OK

6. Check the Structure window to make sure it looks like the following:

Adding Service Request Components

8-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Refining the Layout
Perform the following steps to use the Structure window to add and arrange components.
This is an easy way to ensure that your layout components are in the correct locations relative
to the other components.

1. Rearrange the af:panelLabelAndMessage components so that the svrID component is
first and problemDescription is last. You can do this by dragging the components to the
correct relative positions using the Structure window.

2. Change the title of the panelPage from Change Me to Service Request Information.
(Select af:panelPage in the Structure pane and change the Title property in the Properties
Inspector.)

3. Using the Structure window and the Properties Inspector again, change the number of
rows the problemDescription displays. Select the problemDescription and set the Rows
property to 4.

Because problemDescription is a multiline field, this enables more of the description to be
displayed. Changing the Rows property also automatically adds scrolling capability to
the widget.

4. Change the Columns property to 35.

This makes the field 35 characters wide. You could leave this property blank and enable
JSF to use a default value, but this gives you finer grain control of the layout.

5. Change the ReadOnly property to true.

The default for an input text component is to be updateable, but because this portion of
the form is read-only, you should change this field to readOnly.

The page should look like the following screenshot:

Adding the Notes Panel

Developing a Master-Detail Page 8-7

6. The SRMain page gets its service request context from userState.currentSvrId. Although
you can run this page as a stand-alone, it won't display data unless it is called from the
SRList page. To run the page and see the results so far, right-click the SRList page and
select Run from the context menu.

Sign on to the application using bernst as the username and welcome as the password.
The SRList page displays all of the service requests for the current user. Select any service
request and click the View button. You now see your SRMain page with the selected
service request. The page should look something like the following:

Adding the Notes Panel
The second section of this page is an entry form that enables users to add a new line to the
ServiceRequest History. The form displays only the notes field and a button.

The notes panel is based on a serviceHistories custom constructor. This constructor is called
when the page is loaded. This creates a row in the iterator that accepts values from the form and
is also accessible using EL. The constructor accepts two arguments: the current service request
and the current user object.

Create the custom constructor by following these steps.

1. Expand DataModel Application Sources oracle.srdemo.datamodel in the
Applications Navigator.

2. Double-click ServiceHistories.java to open it in the code editor.

3. Add the following code just below the default constructor. The default constructor is
defined as
 public ServiceHistories() {

Adding the Notes Panel

8-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

 …
 }

 public ServiceHistories(ServiceRequests sr, Users user) {
 this();
 sr.addServiceHistories(this);
 setUsers(user);
 setLineNo(null);
 setSvhDate(null);
 }

4. After you create the constructor, re-create the data control. Right-click
SRPublicFacadeBean.java and select Create Data Control from the context menu.

Creating the Add Note Section
Now that you have the custom constructor created and included in the data control, you can
add the form to create service history rows. When you add the form, you are prompted for
the two arguments to the constructor. The first is the current service request, which you
obtain from the findServiceRequestById binding. The second is the user object, which you
obtain from the userInfo bean.

1. Click the SRMain.jspx tab in the visual editor.

2. Select the Data Control Palette and drag the SRPublicFacadeLocal Constructors
oracle.srdemo.datamodel.ServiceHistories ServiceHistories(ServiceRequests, Users)
method to the second afh:rowLayout in the Structure Window.

3. In the Edit Form Fields dialog box, select Include Submit Button then click OK to accept
the default field values.

4. In the Action Binding Editor, select the sr parameter and double-click the value property.
Click the browse button to open the EL picker.

5. Expand ADF Bindings bindings findServiceRequestByIdIter currentRow.
Double-click dataProvider to create the expression. Click OK. The code should look like
the following:
${bindings.findServiceRequestByIdIter.currentRow.dataProvider}

6. Double-click the value property for the user parameter and click the browse button to
open the EL picker.

7. Select JSF Managed Beans userInfo and double-click userobject to add it to the
expression. Click OK. The code should look like the following:
${userInfo.userobject}

8. Click OK to close the Action Binding Editor.

When users add a note using this panel, the only field they need to use is the Notes field.
In the next few steps, you will change the rendered property of all the fields except the
Notes field to false using the Structure pane and the Properties Inspector.

9. Select af:inputText items in the structure pane and change the rendered property to false
for each attribute except notes.inputValue.

Note: You can press [Ctrl] + [Click] to multiselect all of the attributes and change the
common rendered property in the property inspector.

Adding the Notes Panel

Developing a Master-Detail Page 8-9

10. Change the Rows property of the notes.inputValue component to 4. This makes the field
into a text area type field.

11. Change the Columns property to 35.

12. Change the Label property to SR Notes.

Deriving Values in Code
The last thing you need to do to this panel is add custom code to an “Add a Note” button
that adds data to and persists the history row. Instead of having the user enter each of the
values, you derive some of the values from the current service request and the current user.

1. In the Component Palette, select SRPublicFacadeLocal persistEntity(Object) and
drag it to the Submit button in the visual editor. Select Bind Existing CommandButton
from the context menu.

2. In the Action Binding Editor, set the value property to
${bindings.ServiceHistories.result}. Click OK to continue.

3. Select the persistEntity button and change the following properties.

Field Value

Text Add a Note

Id addNoteButton

We want to be able to refresh some data a little later on, but only when this button is
clicked. ADF provides a setActionListener component that is executed only when the
button is clicked. The setActionListener accepts two arguments: a “from” clause and a
“to” clause. In a refresh condition, we will check the value of the “to” clause to see if the
button has been pressed.

4. Right-click af:commandButton – Add a Note in the Structure window. Select Insert
Inside af:command Button – Add a Note ADF Faces Core SetActionListener from
the context menu.

5. Enter the following values in the Insert SetActionListener dialog box, and then click OK.

Field Value

From #{true}

To #{requestScope.createNewSH}

6. Double-click the Add a Note button. This opens the Bind Action Property dialog box.
Make sure the Generate ADF Binding Code check box is selected and then click OK to
accept the default value for the method name.

The Bind Action Property dialog box closes and directs you to the
addNoteButton_action() method in the SRMain.java file. This is where you add the
custom code to set the svhType argument, persist the entity, and requery the service

Adding the Notes Panel

8-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

request.

The following code is executed when the user clicks the “Add a Note” button. Remember
that the user is only entering the notes description on the form. The code determines the
type of the note based on the user. If the signed-on user is a customer, the value is set to
Customer; if the user is staff, the type is set to Technician.

7. Determine the svhType as follows: Copy the code below to the
AddNoteButton_action() method as the first lines in the method.

// START CUSTOM CODE TO SET SVHTYPE

FacesContext ctx = FacesContext.getCurrentInstance();
String callType = "Customer";
UserInfo user =
 (UserInfo)JSFUtils.getManagedBeanValue(ctx, "userInfo");
 if (user.isStaff()) {
 callType = "Technician";
 }
ADFUtils.setPageBoundAttributeValue(getBindings(),"svhType",
callType);

8. When you copy this code into the method, JDeveloper prompts you to import the
required classes. Accept the following imports:

javax.faces.context.FacesContext

oracle.srdemo.view.UserInfo

oracle.srdemo.view.util.JSFUtils

oracle.srdemo.view.util.ADFUtils

9. Persist the entity as follows: JDeveloper created the persist entity code for you when you
dropped the persistEntity() method on the submit button. This is the code you want
to execute next. It is already in the addNoteButton_action() method, so no changes are
required.

BindingContainer bindings = getBindings();

OperationBinding operationBinding =
 bindings.getOperationBinding("persistEntity");

Object result = operationBinding.execute();

10. Refresh the service request iterator as follows: When the user adds a note, and you
persist the entity, the table at the bottom of the page (which you add in the next section)
needs to be refreshed. You refresh the iterator by getting the OperationBinding for the
method and executing it. Add the following code after the persist entity code.
…

Object result = operationBinding.execute();

//now re-execute the iterator to refresh the screen

OperationBinding requery =
 bindings.getOperationBinding("findServiceRequestById");

requery.execute();

That’s all of the code for the addNoteButton_action() method.

Adding the Service Histories Panel

Developing a Master-Detail Page 8-11

There is one last thing you need to address, which is to specify when and how often the
ServiceHistoriesIterator is automatically refreshed.

11. Select app_SRMainPageDef.xml in the Applications navigator.

12. Select ServiceHistoriesIter in the Structure window.

13. In the Properties Inspector, change the RefreshCondition to the following:
${(!adfFacesContext.postback || requestScope.createNewSH) and
 empty bindings.exceptionsList}

This condition checks to make sure that the automatic refresh happens if the page refresh
is not because of a Faces postback or if the createNewSH is TRUE. Recall that this is the
code you added in the setActionListener event. It also prevents a refresh if there are
binding errors in the exceptions list.

Because you are now committing records to the database, you need to set the OC4J
preferences to manage the transactions as local transactions. You do this in the OC4J
preferences.

14. Make sure the OC4J server in not running. Select Run > Terminate OC4J from the menu.

15. Click the DataModel project in the Applications Navigator, and then select Tools >
Embedded OC4J Preferences from the menu.

16. Expand Current Workspace (SRDemo) DataSources.

17. Click jdev-connection-managed-SRDemo <Managed Data Sources>.

18. Set Transaction Level to Local and click OK

Adding the Service Histories Panel
The final UI component that you need on the SRMain page is a read-only panel that displays the
Service Request History records for the current service request.

1. Click the SRMain.jspx tab in the visual editor.

2. Expand findServiceRequestById(Integer) ServiceRequests in the Component Palette.
Remember that this is the collection you used for the top panel on this page (the one that
displays the service requests).

Summary

8-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

3. Drag the serviceHistoriesCollection from the Data Control Palette to the last (third)
afh:rowLayout in the Structure window as an ADF Read-only Table.

4. In the Edit Table Columns dialog box, make sure the Enable selection check box is clear.
Click OK to accept the defaults.

5. In the Visual Editor, delete all the columns except the Notes, svhType, and svhDate
columns. (Click in the column and press [Delete], or right-click and select Delete from the
context menu.)

6. Use the Structure window and rearrange the columns into the following order:
svhDate
svhType
notes

Now you can test your page from the SRList page. You see that the page displays the
same row that you chose on the SRList page.

7. Right-click SRList.jspx in the Applications Navigator and select Run. You can choose to
view any of the service requests belonging to you as the signed-on user. Add a note to
any service request. Notice that it is displayed in the detail table at the bottom of the
page. Close the browser when you are finished testing.

Summary
In this chapter, you created a master-detail page using ADF Faces components. Those
components display data that is coordinated between two panels on the page. Without adding
any code, the Histories panel shows only those rows associated with the service request
displayed in the top panel.

You also added an action that refreshes the page based on a parameter sent from the calling page.
In this way, you ensured that the SRMain page displays data that is coordinated across multiple
pages.

Here are the key tasks that you performed in this chapter:

 Created the Service Request read-only form

 Created a custom constructor to build a new service histories row

 Created the Notes input form

 Added the Service Request History table

Implementing Transactional Capabilities 9-1

9
Implementing Transactional Capabilities

This chapter describes how to build the pages to create a service request. The service request
process involves three main pages: one to specify the product and problem, one to confirm the
values, and one to commit and display the service request ID. You also create a fourth page,
which displays some frequently asked questions about solving some typical product problems.

The chapter contains the following sections:

 Introduction

 Developing the Create Page

 Creating the Confirmation Page

 Creating the Done Page

 Creating the Frequently Asked Questions Page

 Running the Pages

 Summary

Introduction

9-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
Transactional operations for creating and deleting a record are very similar in process. When
creating a record, users enter information, click a create button, and then receive a confirmation
of the creation. When deleting a record, users select the record, click a delete button, and then
receive a confirmation of the deletion. In both cases, an additional step can be included to ask
users if they are sure of their action.

In this chapter, you build four screens:

 A page to create or delete a service request record (SRCreate)

 A page to confirm the action, including the newly created service request values
(SRCreateConfirm)

 A page to acknowledge the successful creation (SRCreateDone)

 A page to display some static text describing possible service request solutions (SRFaq)

You perform the following key tasks in this chapter:

 Build the Create, Confirm, and Done pages

 Refine the prompts to get their values from UIResources.properties

 Add components for the data-bound objects

 Add command buttons to control transactions

 Manage transactions values

 Pass parameters and navigate between pages

 Define and activate a process train to show the progress of the create process

 Create and link the frequently asked questions

 Note: If you did not successfully complete Chapter 8, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter9 to hold the starter application. If you
used the default settings, it should be in
<jdev_install>\jdev\mywork\Chapter9.

2. Unzip <tutorial_setup>\starterApplications\SRDemo-
EndOfChapter8.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev_install>\jdev\mywork\Chapter9\SRDemo\SRDemo.jws. This opens
the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 8.

Developing the Create Page

Implementing Transactional Capabilities 9-3

Developing the Create Page
The SRCreate page enables users to create a new service request. The main menu on the SRList
page can call this page. It is also possible to call Create New Service Request on the global menu,
which is available on all pages.

SRCreate enables users to select from a list of all appliance products and then enter a description.
After entering the description, users can click the Continue button to access a confirmation page
(see details on SRCreateConfirm).

However, before users enter the information, they have the option of viewing a Frequently Asked
Questions page that, when clicked, presents a modal page that displays a set of frequently asked
questions along with accompanying answers (see SRFaq). Another important aspect of the
SRCreate page is that users have the option of canceling out of creating a new service request by
clicking the Cancel button. Clicking Cancel bypasses all form validation and returns to the SRList
page.

Note: Earlier in the tutorial, you created the page outline in the page-flow diagram.
In this chapter, you complete the page and apply the template that you created in
Chapter 4.

Perform the following steps to build the Create page and attach the template that you created
earlier:

13. If it is not open, double-click the faces-config.xml file to view the page-flow diagram.

14. Double-click the SRCreate page to invoke the JSF Page Wizard.

15. Ensure the values for the first three steps of the wizard match those in the following
tables:

16. Click Next to continue.

Wizard Step 1: JSP File

Field Value

File Name SRCreate.jspx

Directory Name This is the location where the file is stored. The default
value should be fine.

Type JSP Document

Mobile Clear the check box.

Developing the Create Page

9-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

.
17. Click Next to continue

Wizard Step 3: Tag Libraries Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

18. Click Finish to create the page details. The new SRCreate page is displayed in the Visual
Editor.

19. Open the SRDemoTemplate file if it is not already open. In the Structure window, right-
click the afh:html node, and choose Copy from the shortcut menu.

20. Click the tab to return to the SRCreate page, and in the Structure window expand the
f:view node.

21. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.

22. In the Structure window, double-click the afh:head node and change the Title property
to SRDemo Create.

23. Click OK. The Visual Editor now displays the SRCreate page with the look and feel of the
other pages.

Wizard Step 2: Component Binding

Field Name Value

Automatically Expose UI
Components in a New Managed
Bean

Ensure that this option is selected.

Name backing_app_SRCreate

Class SRCreate

Package oracle.srdemo.userinterface.backing.app

Developing the Create Page

Implementing Transactional Capabilities 9-5

Refining the Create Page
In this section, you modify the SRCreate page structure to display a different title, change the
layout, and include some output items. Because creating a service request is a process, it is useful
to track that process.

1. In the Structure window, expand the f:view afh.html afh.body h:form nodes to
expose the af:panelPage.

24. Double-click the af:panelPage and change the Title property to
#{res['srcreate.pageTitle']}.

You can set this property to the literal text of your choice for the title. You are setting the
property to a value in the UIResources.properties file, which contains a list of paired
properties and values. At run time, this file is read and the values replaced on the page.
The page title will be “Create a New Service Request.”

25. Create a Process Train to track the process of creating a service request. From the ADF
Faces Core category, drag a ProcessTrain onto the af:panelPage component. This enables
you to visually see the progress of the create process through all the pages.

26. Select the af:processTrain. In the Property Inspector, set the properties to those in the
following table:

Field Value

Value #{createTrainMenuModel.model}

Var train

Id createStepsTrain

27. In the Structure window, expand the af:processTrain ProcessTrain facets, exposing
the nodeStamp. From the ADF Faces Core category, drag a CommandMenuItem to the
nodeStamp.

28. Select and modify the af:commandMenuItem properties to match the table below:

Field Value

Text #{train.label}

Action #{train.getOutcome}

Id trainNode

29. With af:commandMenuItem selected, click the Source tab and set one more property:
readOnly="#{createTrainMenuModel.model.readOnly}".

Developing the Create Page

9-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

30. Click the Design tab. In the Structure window, drop an ObjectSpacer from the ADF

Faces Core category. It will be displayed below af:processTrain.

To do this, drag the ObjectSpacer to the af:panelPage, right below the af:processTrain. If
you need to move it to a different location, drag it to another node and it will be added at
the bottom of the list in that node. Then clear the Width property.

31. To add some extra space to the page and provide a place for some items, drop a
PanelHorizontal component on the af:panelPage. When you drop the PanelHorizontal
on the af:panelPage, it is added to the bottom of the list, below the af:objectSpacer.

32. Expand the af:panelHorizontal node. From the ADF Faces Core category, drop an
OutputText item and a CommandLink inside the af:panelHorizontal node. The output
text and command link items display information about checking the Frequently Asked
Questions page to solve a problem.

33. Set the af:outputText: Value property to #{res['srcreate.faqText']}. Set the
af:commandLink properties to those in the following table:

Field Value

Text #{res['srcreate.faqLink']}

Action FAQ

PartialSubmit true

34. Create some extra space between the text and link. In the af:panelHorizontal node, drop
an ObjectSpacer on the PanelHorizontal facets separator node. Set the Width of the
spacer to 4. The Structure window should look like the following screenshot:

You now add some explanatory text about what to do on this page and test it.

13. Collapse the af:panelHorizontal node and add another ObjectSpacer below the
af:panelHorizontal. To do this, drop the ObjectSpacer on the af:panelPage. Clear the
Width property.

14. Below the af:objectSpacer, add an OutputFormatted item from the ADF Faces Core
category.

Developing the Create Page

Implementing Transactional Capabilities 9-7

15. Double-click the af:outputFormated item and set the Value property to
#{res['srcreate.explainText']}. This displays text on the page to explain how to
enter information about the service request.

16. Add another ObjectSpacer below the af:outputFormatted item. Clear the Width
property.

17. In the Visual Editor, select Run from the context menu. When the page runs, it displays
the structure of the form with headers and labels derived from the
UIResources.properties file.

18. When prompted, use sking as the username and welcome as the password.

Adding Data Components to the Page
In this section, you include the data components for creating a service request. The input
form on SRCreate enables users to select from a list of appliances, which is populated from
the Products table.. Users are also presented with a text area to enter the problem description.
When they click the Continue button, an action of “Confirm” executes and navigates to the
SRCreateConfirm page, where the new service request can be committed to the database.

Note: Whenever you want to add a component to the end of a node, drop it on the
parent node. JDeveloper automatically adds it to the end of the list. After it is added,
you can move it.

1. The first thing you need is a panel to contain the data components. In the ADF Faces
Core category, drag a PanelForm to the Structure window, and drop it so it is below the
last af:objectSpacer. To do this, drop the PanelForm onto the af:panelPage.

2. Click the Data Control Palette tab. Expand the SRPublicFacadeLocal
findAllProducts() nodes and select the return value node Products.

Developing the Create Page

9-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

35. Drag this component to the af:panelForm. In the pop-up menu, select Navigation > ADF

Navigation List.

3. In the List Binding Editor, make sure only the name attribute is in the list of Display
Attributes. Click OK to continue.

4. The list is created in a af:panelGroup, which we don’t need. In the Structure window,

drag af:selectOneChoice to the af:panelForm. Then select and delete the af:panelGroup.

This action also deletes the nested af:panelHeader labeled Details in the af:panelGroup.

5. You want to show the list of Products as a T-List, not a drop-down list. So select the
af:selectOneChoice again and from the context menu choose Convert. Scroll down and
choose SelectOneListbox from the dialog box and click OK.

6. In the Property Inspector, for the af:selectOneListbox item, set the Label property to

#{res['srcreate.info.1']}, which is obtained from UIResources.properties. Also set
the AutoSubmit property to false. This property controls what happens when you select
one value. If it is true, the value you select is immediately submitted. If false, then it is not
submitted until you explicitly perform a submit action.

7. From the ADF Faces Core category; drag an InputText to the af:panelForm. It will be
displayed after the af:selectOneListbox. Set its values to those from the following table.
Then click OK.

Field Value

Label #{res['srcreate.info.2']}

Columns 50

Rows 4

Required true

Developing the Create Page

Implementing Transactional Capabilities 9-9

8. Drop a PanelButtonBar onto the af:panelForm PanelForm facet footer.

9. Drop a CommandButton onto the af:panelButtonBar for users to cancel the creation of a
service request. Set the Text property to #{res['srdemo.cancel']}, set Immediate to
true, and set Id to cancelButton.

10. Drop a second CommandButton onto the af:commandButtonBar for users to continue
creating the service request. Set its Text property to #{res['srdemo.nextStep']} and
set the Action property to confirm.

11. Click Save, and then click Run to run the page.

Saving the Problem Description Value
On this page, the user basically does two things: selects a product from the list and enters the
problem description. You “record” the currently selected product by using the current row in
the results collection. This happens because you created the item from the Data Control
palette. However, the Problem Description field is unbound. You can save its value by using
a variable.

1. Save the variable in the page definition file for the SRCreate page. From the Visual
Editor, use the Go to Page Definition context menu and navigate to the file.

2. Right-click executables node and select Insert inside executables|variableIterator.

Developing the Create Page

9-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

3. In the Structure window, expand the executables node. Select the variables node and
from the context menu choose Insert inside variables | variable. Set the Name of the
variable to problemDescriptionVar and the Type to java.lang.String. Click OK.

4. Select bindings in the Structure window and Insert inside Bindings | attributeValues.

5. In the Attribute Binding Editor, select the variables node and the problemDescriptionVar
should display on the Attribute panel. Select it and confirm, at the bottom of the page,
that the “Select an Iterator” drop-down displays variables. Click OK.

6. In the Structure window, select bindings problemDescriptionVar. Change the ID

property from problemDescriptionVar to problemDescription.

7. Save your work.

8. Click the SRCreate.jspx tab to go back to the page in the Visual Editor. Select the
af:inputText -#{res['srcreate.info.2']} field for the problemDescription. In the Property
Inspector, use the EL expression picker to set the Value property to
#{bindings.problemDescription.inputValue}.

Creating Reusable Methods
When you click the cancel button, you want to return to the SRList page (via the GlobalHome
navigation rule). When you return to the SRList page, you also want to reset the product list
to the first value and clean out the problemDescription field. The page is then ready to
create another service request.

Developing the Create Page

Implementing Transactional Capabilities 9-11

1. To wire the button, in the Visual Editor double-click the first button in the footer
(#res['srdemo.cancel']) to define an action. In the Bind Action Property pane, accept the
default Method name (which should be cancelButton_action), and click OK.

36. You are passed into the SRCreate.java file. Add the following code to the event. Add an
import statement to the beginning of the file:
import oracle.binding.BindingContainer;

37. This first section of code goes after the variable declarations and before the first method
in the class. It defines a variable for the BindingContainer and defines get and set
methods for the BindingContainer.

private BindingContainer bindings;

public BindingContainer getBindings() {

 return this.bindings;}

public void setBindings(BindingContainer bindings) {

 this.bindings = bindings;}

38. This next piece of code replaces the generated cancelButton_action() method. There
are inline comments that explain what each section of code does. Replace the existing
method with the following:

public String cancelButton_action() {

/*

This action is actually reused from two pages, so we just need to ensure that we
use the correct binding container reference.
*/

DCBindingContainer dcBindings =
(DCBindingContainer)ADFUtils.findBindingContainer(getBindings(),
 "app_SRCreatePageDef");

/*

Reset the product list to the first item:

*/

DCIteratorBinding productsIter =
dcBindings.findIteratorBinding("findAllProductsIter");

productsIter.setCurrentRowIndexInRange(0);

/*

Clean out the description field:

*/

AttributeBinding problem =
 (AttributeBinding)dcBindings.getControlBinding

("problemDescription");

problem.setInputValue(null);

/*

Navigate back to the list page

*/

Creating the Confirmation Page

9-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

return "GlobalHome";

}

4. Include all the import statement in the file by using <alt><Enter>. For the
AttributeBinding package, import oracle.adf.model.

5. Save your work.

Assigning a Binding to the Managed Bean
The data components we added to the page were manually bound to their data sources. You
now need to create bindings for the SRCreate managed bean. The managed bean enables the
UI components to communicate with the data model. ADF created the managed bean for
you, so you now need to define a property to manage the binding and then manually bind it.

1. Open the faces-config.xml file and click the Overview tab.

2. Select the app_SRCreate managed bean. In the Managed Properties pane, click the New
button.

3. Name the property bindings and click OK.

4. Click the Edit button and set the Value property to #{bindings}. Click OK to complete
the process.

Creating the Confirmation Page
The SRCreateConfirm page enables a user to confirm a newly created service request and commit
it to the database. It is called when the user clicks the Continue button on the SRCreate page. It
displays the new service request information and has three buttons: Cancel, Go Back, and Submit
Request. Clicking Cancel cancels the entire new service request entry and navigates to the SRList
page. Clicking Go Back returns the user to the SRCreate page but preserves the new tentative
service request entry.

Note: In some cases, labels of fields will be pulled from the general resource bundle
rather than being inherited from the bindings for that field. All of the labels which
contain “#{res[...]}” reference the component attributes.

Here, you continue to develop pages to support the creation process. The second page in the
process is the SRCreateConfirm page, which also uses the template you created earlier.

1. With the faces-config.xml file open, double-click the SRCreateConfirm page to invoke
the JSF Page Wizard.

2. Ensure that the values for the first three steps of the wizard match those in the following
tables:

Creating the Confirmation Page

Implementing Transactional Capabilities 9-13

3. Click Next to continue.

4. Click Next to continue.

Wizard Step 3: Tag Libraries Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

5. Click Finish to create the page details. The new SRCreateConfirm page is displayed in
the Visual Editor.

6. Open the SRDemoTemplate file if it is not already open. In the Structure window, right-
click the afh:html node, and from the shortcut menu, choose Copy

7. Click the tab to return to the SRCreateConfirm page, and in the Structure window
expand the f:view node.

8. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.

Wizard Step 1: JSP File

Field Value

File Name SRCreateConfirm.jspx

Directory Name This is the location where the file is stored. Because
you last set this value to have an appended \app,
the default value should already contain it. If not,
add it.

Type JSP Document

Mobile Clear the check box.

Wizard Step 2: Component Binding

Field Value

Automatically Expose UI
Components in a New Managed
Bean

Ensure that this option is selected.

Name backing_app_SRCreateConfirm

Class SRCreateConfirm

Package oracle.srdemo.userinterface.backing.app

Creating the Confirmation Page

9-14 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

9. In the Structure window, double-click the afh:head node and change the Title property
to SRDemo Confirm .

10. Click Finish. The Visual Editor now displays the SRCreateConfirm page with the look
and feel of the other pages.

Refining the Confirmation Page
In this section, you modify the SRCreateConfirm page to display a different title and include
data-bound controls. The page includes a Process Train to visually show the progress
through the create process. On the first page, the first process train's first circle will be filled
in and the second circle not filled in. On the SRCreateConfirm page, both circles are filled in.
The first few steps focus on enabling the process train functionality.

1. In the Structure window, expand the f:view afh.html afh.body h:form nodes to
expose the af:panelPage.

2. In the Structure window, double-click the af:panelPage and set the Title property to
#{res['srcreate.pageTitle']}. Just like all the other pages in the tutorial, this value is
replaced at run time with a value from UIResources.properties.

Next you need to create a ProcessTrain, just as you did for the SRCreate page. Rather than
build the ProcessTrain manually, you can use a copy of the af:processTrain you created for
the SRCreate page. The ProcessTrain uses the same values on both pages.

3. Open the SRCreate page and expose the af:panelPage.

4. Select and right-click the af:processTrain. Then select Copy.

5. Click the SRCreateConfirm page, and in the Structure window expose the af:panelPage
node.

6. Select the af:panelPage and, from the context menu, select Paste. The af:processTrain is
added as a child of the af:panelPage.

7. Click the Design tab and, in the Structure window, drag an ObjectSpacer to the
af:panelPage. It is added below the af:processTrain. Set the height to 20 and the width to
<null>.

Refining the Display
The Process Train is now included to show where you are in the creation process. At this

Creating the Confirmation Page

Implementing Transactional Capabilities 9-15

point, you need to display three data values: the user who logged the service request, the
product, and the problem description.

In the next steps, you add some confirmation text as well as information about the user
creating the service request.

1. Drag an OutputFormated component onto the af:panelPage, and it will appear below the
af:objectSpacer. Set the Value property to #{res['srcreate.confirmText']}. At run
time, this text asks you if you are confirming the product and problem values.

2. Drop another ObjectSpacer and drop it onto the af:panelPage. It should appear below
the af:outputFormated component. Set the height to 20 and the width to <null>.

3. Drop a PanelBox from the Component palette onto the af:panelPage. It will display after
the af:objectSpacer. Set the Width property of the PanelBox to 100%.

4. Drag and drop a PanelHorizontal component onto the af:panelBox, making it a child
node.

5. Drag an OutputFormatted component onto the af:panelHorizontal and set its value to
#{res['srcreate.confirmLine.1']}.

6. Drag an ObjectSpacer component onto the af:panelHorizontal node, and it will display
below the af:outputFormated component. Set the width to <null> and the height to 20.

7. Drop an OutputText component onto the the af:panelHorizontal . It will display below
the af:objectSpacer. This outputText will display information about the user logging the
service request. Display the username and the user ID in this component. Set the Value
property to #{userInfo.userName} #{userInfo.userId}.

Your Structure window should look like the following screenshot. This completes the task of
adding information about the user who logged the request.

Displaying the ProductId
You now add the product ID to the page. You can copy and paste ADF components from one
location to another in the Structure window. The following steps for adding the product ID
are similar to those you just completed for the user.

1. Drop an ObjectSpacer component onto the af:panelPage, and it will appear below the
af:panelBox component. Set the height to 20 and the width to <null>.

2. Select the af:panelBox you created in the previous step. From the context menu, select
Copy.

Creating the Confirmation Page

9-16 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

3. Select the af:panelPage and, from the context menu, select Paste. A new af:panelBox
should be displayed below the af:objectsSpacer you just added.

4. Expand af:panelBox af:panelHorizontal and modify the properties of the new
components according to the steps below.

5. Set the af:outputFormatted component to #{res['srcreate.confirmLine.2']}.

6. Set the af:outputText Value property to
#{data.app_SRCreatePageDef.findAllProductsIter.currentRow.dataProvider['n

ame']}.

The two areas you just created on the page should look like the following screenshot:

Displaying the Product Description
Finally, you add the product description. You copy and paste ADF components from one of
the previous locations and update the properties. The following steps for adding the
description are similar to those you just completed for the product ID.

1. Drop an ObjectSpacer component onto the af:panelPage. It will appear below the
af:panelBox component. Set the height to 20 and the width to <null>.

2. Select the af:panelBox you created in the previous step. From the context menu, select
Copy.

3. Select the af:panelPage and, from the context menu, select Paste. An af:panelBox should
be displayed below the af:objectsSpacer you just added.

4. In af:panelHorizontal, set the af:outputFormatted component to
#{res['srcreate.confirmLine.3']}.

5. Set the af:outputText Value property to
#{data.app_SRCreatePageDef.problemDescription.inputvalue}.

Creating the Confirmation Page

Implementing Transactional Capabilities 9-17

6. Add one final ObjectSpacer below the third af:panelBox with height of 20 and width of
<null>. You have now created the three display items for the page. The Visual Editor
should look like the following screenshot:

Controlling the Transaction
At this point, the page includes components displaying information about the user who
logged the service request, the product, and the problem description. You now add some
buttons to control the transaction.

1. Click the SRCreateConfirm.jspx tab to go back to the page.

2. Using the Structure window, drop a PanelButtonBar on the af:PanelPage , positioning it
after the last af:objectSpacer.

3. Inside the af:panelButtonBar, drop two CommandButton components.

4. In the first button, set the following properties: Text to #{res['srdemo.cancel']} and
Action to #{backing_app_SRCreate.cancelButton_action}. (Note how this calls back
to the same cancel action as the SRCreate page.)

5. In the second button, set the following properties: Text to
#{res['srdemo.previousStep']} and Action to back. This button navigates you back
to the create page.

Binding the Method to the Button
When you click the third button, a few things must happen. The first is to collect the bound

Creating the Confirmation Page

9-18 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

values and populate the parameters of the method you want to execute. All the methods
from your session bean are available to you from the Data Control method. In the next few
steps, you create and bind the third button.

1. Open the Data Control palette. Drag the
createServiceRequests(String,Integer,Integer) method to af:panelButtonBar. In
the pop-up menu, select Methods|ADF Command Button.

You assign the parameters to their sources using the Action Editor. Set the binding
values for the product ID and description and the user values.

2. The problem description need to populate the first parameter of the createServiceRequest
method. Set the problemDescription Value to
#{data.app_SRCreatePageDef.problemDescription.inputValue}.

3. The second parameter needs to be the product ID for the product picked from the select
one list. Set the productId Value to
#{data.app_SRCreatePageDef.findAllProductsIter.currentRow.dataProvider['p

rodId']}. You can add all but the ['prodId'] using the EL picker. You must add the last
part manually.

4. The third value is the user ID of the person logged in. Set the createdBy Value to
#{userInfo.userId}. The Action Editor should look like the following screenshot:

5. Click OK to continue.

6. Use the following table to set the property values for the third af:commandButton:

Property Value

Text #{res['srcreate.submit.button']}

Creating the Confirmation Page

Implementing Transactional Capabilities 9-19

Action saveButton_action()

Id saveButton

Disabled false

The Property Inspector should look like the following screenshot.

7. Save your work. The Structure window now includes the three buttons:

Committing the Data and Returning the Service Request ID
The parameters of the createServiceRequests method are now bound. Clicking the button
must now perform two actions. It must commit the data values to the database. It then must
return the service request ID to an attribute for display as confirmation on the SRDone page.
The service request ID is generated by the native sequence generator and mapped to the
TopLink Service Request definition. In the next series of steps, you add code to the button to
accomplish these actions.

1. In the Visual Editor, double-click the third button you created to define an action in the
backing bean.

39. In the pop-up Bind Action Property dialog box, accept the default value for the Method
name. Ensure that the Generate ADF Binding Code check box is selected. Selecting this

Creating the Confirmation Page

9-20 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

check box adds the import statement and all the getters and setters for the ADF bindings.
Click OK to continue.

40. You are passed into the SRCreateConfirm.java file.

41. To get both actions to happen, replace some of the generated code in the
saveButton_action() method with the following code. Paste your code below the
OperationsBinding line of code.

OperationBinding operationBinding =
 bindings.getOperationBinding("createServiceRequests");

//Add this code

ServiceRequests result = (ServiceRequests)operationBinding.execute();

Integer svrId = result.getSvrId();

ExternalContext ectx =
 FacesContext.getCurrentInstance().getExternalContext();

HttpServletRequest request = (HttpServletRequest)ectx.getRequest();

request.setAttribute("SRDEMO_CREATED_SVRID",svrId);

return "complete";

}

42. Import all the suggested packages by pressing [Alt] + [Enter].

43. Save your work and Run the page. Because the page runs without being called from the
SRCreate page, the product defaults to the first one retrieved from the database, and the
problem description is blank. The following screenshot shows the page. When prompted,
use sking as the username and welcome as the password.

Creating the Done Page

Implementing Transactional Capabilities 9-21

Creating the Done Page
The SRDone page informs the user that a service request will be assigned and processed by a
technician. It also displays the service request ID for the user’s records.

Note: In some cases, a field label is pulled from the general resource bundle rather
than inherited from the bindings for that field.

The SRCreateDone page also uses the template that you created earlier in the tutorial.

1. In the faces-config.xml file, double-click the SRCreateDone page to invoke the JSF
Page Wizard.

2. Ensure that the values for the first three steps of the wizard match those in the following
tables:

Wizard Step 1: JSP File

Field Value

File Name SRCreateDone.jspx

Directory Name This is the location where the file is stored. Because
you last set this value to have an appended \app, the
default value should already contain it. If not, add it.

Type JSP Document

Mobile Clear the check box.

3. Click Next to continue.

Wizard Step 3: Tag Libraries Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

3. Click Finish to create the page details. The new SRCreateDone page is displayed in the
Visual Editor.

4. Open the SRDemoTemplate file if it is not already open. In the Structure window, right-
click the afh:html node, and from the shortcut menu choose Copy

5. Click the tab to return to the SRCreateDone page, and in the Structure window expand
the f:view node.

6. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.

Creating the Done Page

9-22 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

7. In the Structure window, double-click the afh:head node and change the Title property
to SRDemo Done.

8. Click Finish. The Visual Editor now displays the SRCreateDone page with the look and
feel of the other pages.

Refining the Done Page
In this section, you modify the SRCreateDone page to display a different title, to include a
confirmation message, and to display a button that navigates back to the home page. This
page is not data bound, although it does use a value from the HTTP request that holds the
new SvrId number.

1. In the Structure window, expand the f:view afh.html afh.body h:form nodes to
expose the af:panelPage.

2. Double-click the af:panelPage and change the Text property to
#{res['srcreate.pageTitle']}. Click OK. The Visual Editor displays the new panel
title.

3. In the visual view, drag an ObjectSpacer to the af:panelPage. Set the width to <null>.

4. Drag a PanelBox from the Component palette to the af:panelPage and set the width to
100%.

5. Drag an ObjectSpacer to the af:panelBox.

6. From the Component palette, drag an JSF HTML OutputFormat component to the
af:panelBox.

In the next few step, you display a message about assigning the service request to a
technician and defining where to go when finished.

7. Select the h:outputFormat component and click the Source tab. Replace the existing code
with the following code. This code includes a JSF parameter for the user who created the
service request.

<h:outputFormat value="#{res['srcreate.confirmPanel.message']}"
escape="false">

<f:param value="#{requestScope.SRDEMO_CREATED_SVRID}"/>

</h:outputFormat>

Creating the Frequently Asked Questions Page

Implementing Transactional Capabilities 9-23

8. Click the Design tab and drag an ADF Faces Core CommandButton to the
af:panelBox. It will be displayed below the h:outputFormat component.

9. Set the button Text to #{res['srdemo.nextStep']} and the Action to globalHome. Your
button should look like the following screenshot:

10. To give a bit more space, drag an ObjectSpacer to the af:panelPage. It will appear after

the af:panelBox. In the Visual Editor, your af:panelBox should look like the following
screenshot:

11. Save your work and Run the page. Because the page is not being run after the first two

pages, there is no service request ID. This is why the text referring to the reference
number displays “null” when you run the page. If you run the page as the third in the
sequence, a value service request ID is displayed. The page should look like the
following screenshot. When prompted, use sking as the username and welcome as the
password.

Creating the Frequently Asked Questions Page
In this section, you develop the SRFaq page, which can be invoked from the SRCreate page. This
page displays a few frequently asked questions that might help users solve their problems. The
text values are retrieved from the UIResources.properties file.

Creating the Frequently Asked Questions Page

9-24 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

1. In the faces-config.xml file, double-click the SRFaq page to invoke the JSF Page
Wizard. The values should be correct for the first step in the wizard. Click Next.

2. In the second step of the wizard, select the Do Not Automatically Expose UI
Components in a Managed Bean radio button. The only function this page performs is
to display static text, so no backing bean is required.

3. Click Finish. This creates the page. You need only to add the template and text
references.

4. Open the SRDemoTemplate file if it is not already open. In the Structure window, right-
click the afh:html node, and from the shortcut menu choose Copy.

5. Click the tab to return to the SRFaq page, and in the Structure window expand the f:view
node.

6. Delete the html node. Then right-click f:view and choose Paste from the shortcut menu.

7. In the Structure window, double-click the afh:head node and change the Title property
to SRDemo FAQ.

8. Click Finish. The Visual Editor now displays the SRFaq page with the look and feel of
the other pages.

Refining the FAQ Page
In this section, you modify the SRFaq page to display three common service request problem
descriptions and a solution for each. The text is retrieved from the UIResources.properties
file and can be modified there. For the purposes of this page, the text displays three service
request problems and their solutions.

1. In the Structure window, expand the f:view afh.html afh.body h:form nodes to
expose the af:panelPage.

2. Double-click the af:panelPage and change the Text property to
#{res['srfaq.pageTitle']}. Click OK. The Visual Editor displays the new panel title.

3. In the visual view, drag an ADF Faces Core PanelGroup inside the af:panelPage.

4. Within the af:panelGroup, add three ADF Faces Core PanelLists. These panel lists are
used as placeholders for the text you want to display.

5. In each of the af:panelList components, add an ADF Faces Core OutputFormatted
component. Set the Value property in each to the values from the following table. Each of
these fields corresponds to a service request solution value found in the
UIResources.properties file.

Output Formatted item Value

1st #{res['srfaq.faq.q1']}

2nd #{res['srfaq.faq.q2']}

3rd #{res['srfaq.faq.q3']}

Creating the Frequently Asked Questions Page

Implementing Transactional Capabilities 9-25

The page components you just added should make the page look like the following
screenshot:

6. Expand the af:panelGroup PanelGroup facets Seperator nodes and add an

ObjectSeperator within the separator node. This action adds a separator between each of
the af:panelist components to give the panel a little extra space. The finished page should
look like the following screenshot:

7. Save your work and Run the page. Your page should look like the following screenshot.
When prompted, use sking as the username and welcome as the password.

Creating the Frequently Asked Questions Page

9-26 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wiring the Process Train
On both the SRCreate and SRCreateConfirm pages, you’ve added a process train to view the
progress though the create process. While developing the pages, you created the display for
the process trains. In this section, you create two classes and then create four managed beans
and link them to the process train.

2. In the Applications Navigator, expand the UserInterface Application Sources nodes.

3. Select the oracle.srdemo.view node and from the context menu, select New.

4. In the New Gallery, select General and then Java Class. Click OK.

5. Name the class MenuItem and set the Package to oracle.srdemo.view.menu. Then click
OK.

6. In Windows Explorer, navigate to the location where you unzipped the setup file. Open
the MenuItem.txt file and copy all of it into the new class you just created.

7. Create a second Java class, with the name TrainModelAdapter and with the Package
value set to oracle.srdemo.view.menu.

8. In Windows Explorer, navigate to the location where you unzipped the setup file. Open
the TrainModelAdapter.txt file and copy all of it into the new class you just created.

9. The Applications Navigator should look like the following screenshot:

Creating the Frequently Asked Questions Page

Implementing Transactional Capabilities 9-27

10. In the Applications Navigator, double click the faces-config.xml file and click the

Overview tab.

11. Create four managed beans for the Process Train using the values in the following table.
In each case, set the Scope property to application and clear the “Create class if it
doesn’t exist” check box.

Name Class

createTrain_Step1 oracle.srdemo.view.menu.MenuItem

createTrain_Step2 oracle.srdemo.view.menu.MenuItem

createTrainNodes java.util.ArrayList

createTrainMenuModel oracle.srdemo.view.menu.TrainModelAdapter

Each bean performs a different function. The two createTrain_Step beans connect to a simple
bean that represents how the item is displayed. The createTrainMenuModel connects to the
class responsible for holding the nodes of the process train.

Each managed bean contains information about the current process step. This includes the
page name and the current process step. In the next few steps, you create and assign values
to the managed properties.

12. Create managed properties for three of the managed beans. Use the following tables and
the faces-config.xml - Overview page to complete this step. For all the Managed
Properties, leave the Class property set to <null>.

After you create the managed properties listed in the tables, double-click each one and
set their values to the values in the second column of the tables.

13. Select the createTrain_Step1 managed bean and create the following Managed
Properties.

Managed Properties Value

label #{resources['srcreate.train.step1']}

viewId /app/SRCreate.jspx

outcome GlobalCreate

14. Select the createTrain_Step2 managed bean and create the following Managed
Properties.

Creating the Frequently Asked Questions Page

9-28 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Managed Properties Value

label #{resources['srcreate.train.step2']}

viewId /app/SRCreateConfirm.jspx

outcome Confirm

15. Select the CreateTrainMenuModel managed bean and create the following Managed
Properties.

Managed Properties Value

viewIdProperty viewId

instance #{createTrainNodes}

16. Select the remaining createTrainNodes managed bean. In the List Entries area, set the
Value Class to oracle.srdemo.view.menu.MenuItem and add two new values:
#{createTrain_Step1} and #{createTrain_Step2}. When complete, the area should
look like the following screenshot:

When you’re finished creating all four managed beans, the Structure window should
look like the following screenshot:

Running the Pages

Implementing Transactional Capabilities 9-29

Running the Pages
Now that the page is completed, you can run it and examine the functionality. Here are a few
things to note:

 The SRCreate page enables you to select a product and define a problem.

 The process train is highlighted depending on where you are in the process.

 The product name and problem description values are carried over to the
SRCreateConfirm page.

 Your user ID and name are gathered from your login and displayed.

 The Submit Request button navigates you to the SRDone page and displays the new
service request ID.

 The Continue button navigates you to the global home, which in your case is the SRList
page.

 The new service request record is displayed in the list.

Summary
In this chapter, you built the Search page using JavaServer Faces and ADF components. To
accomplish this, you performed the following key tasks:

 Developed the Create page to specify a service request

 Created a Confirm page to display the service request values

 Created a Done page to display the new service request

 Created a Frequently Asked Questions page to display service request solutions

Developing an Edit Page 10-1

10
Developing an Edit Page

This chapter describes how to create the SREdit page, the page in the SRDemo application that
enables managers and technicians to edit service requests.

The chapter contains the following sections:

 Introduction

 Creating the Page Outline

 Adding UI Elements to the Page

 Creating Lookups to Retrieve the createdBy and assignedTo Names

 Wiring Up the Input Service Request ID Parameter

 Adding a Drop-down List for the status Attribute

 Wiring Up the Cancel Button

 Wiring Up the Save Button

 Disabling Input Fields for Closed Service Requests

 Running the Page

 Changing the Application Look and Feel

 Summary

Introduction

10-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
The SREdit page is one of three screens intended to be used by the company’s staff rather than by
its customers. Managers and technicians use the page to update information on service requests.

Double-click the faces-config.xml file in the Applications Navigator to revisit the page-flow
diagram and examine how the SREdit page relates to the other pages.

Here are some key points to note about the SREdit page:

 The page can be called from three different places within the application: the SRList
page, the SRSearch page, and SRMain. In order to reuse the page from these different
contexts, it is parameterized; that is, the calling page is expected to set parameters that
inform the SREdit page about which service request to query and where to return after
the edit is finished.

 The page enables a service request to be edited by a manager or a technician.

 It enables the user to modify the status of a request.

 It provides for the request to be assigned to another user or manager.

 The Problem Description field and the Assigned Date field are disabled for requests with
a status of Closed.

The following screenshot shows you how the finished SREdit page should look (from a manager
login):

Note: If you did not successfully complete Chapter 9, you can use the end-of-chapter
application that is part of the tutorial setup.

1. Create a subdirectory named Chapter10 to hold the starter application. If
you used the default settings, it should be in
<jdev_install>\jdev\mywork\Chapter10.

2. Unzip <tutorial_setup>\starterApplications\SRDemo-
EndOfChapter9.zip into this new directory. Using a new separate directory
keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev_install>\jdev\mywork\Chapter10\SRDemo\SRDemo.jws. This
opens the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 9.

Creating the Page Outline

Developing an Edit Page 10-3

To create the SREdit page with the functionality and look-and-feel described in the preceding list,
you perform the following key tasks:

 Create the page outline (based on the template page you created in Chapter 4)

 Add UI elements to the page

 Create lookups to retrieve the createdBy and assignedTo names

 Wire up the input service request ID parameter

 Add a drop-down list for the status attribute

 Wire up the Cancel button

 Wire up the Save button

 Disable input fields for closed service requests

Creating the Page Outline
Perform the following steps to create the SREdit page and add the template to apply the
appropriate look and feel.

1. If it is not already open, double-click the faces-config.xml file to view the Page Flow
Diagram.

2. Double-click the SREdit page to invoke the JSF Page Wizard.

3. Complete the first three steps of the wizard using the values in the following tables:

Creating the Page Outline

10-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wizard Step 1: JSP File

Field Value

File Name SREdit.jspx

Directory Name This is the location where the file is stored. Ensure that
you create the page in the
\SRDemo\UserInterface\public_html\app\staff
folder.

Type JSP Document

Mobile Clear the check box.

4. Click Next.

Wizard Step 2: Component Binding

Field Value

Automatically Expose UI
Components in a New Managed
Bean

Ensure that this radio button is selected.

Name backing_app_staff_SREdit

Class SREdit

Package oracle.srdemo.view.backing.app.staff

5. Click Next.

Wizard Step 3: Tag Libraries

Field Value

Selected Libraries ADF Faces Components

 ADF Faces HTML

 JSF Core

 JSF HTML

6. Click Finish to create the page details. The new SREdit page is displayed in the Visual
Editor.

7. Open the SRDemoTemplate file if it is not already open. In the Structure window, shrink
the afh:html node and select it. From the context menu, choose Copy.

8. Click the tab to return to the SREdit page. In the Structure window, expand the f:view
node.

9. Delete the html node. Then right-click f:view and choose Paste from the context menu.

Adding UI Elements to the Page

Developing an Edit Page 10-5

10. The main image doesn't appear; you need to change the path. Select the image and then,
in the Property Inspector, reset the URL property to /images/SRBranding.

The look and feel that you created earlier is now applied to the new page.

Adding UI Elements to the Page
Perform the following steps to start adding some user interface elements to the page. You need to
include all the data components from the findServiceRequestById method and then add some
command buttons to control the save and cancel actions.

1. Add a title to your page as follows: Click the panelPage in the Visual Editor to select it.
(Alternatively, you can select af:panelPage in the Structure window.) In the Property
Inspector, type #{res['sredit.pageTitle']} in the Title property.

Alternatively, as you’ve seen several times before in earlier chapters of this tutorial, you
can invoke the PanelPage Properties dialog and click Bind in the Title property and
choose sredit.pageTitle from the res node, and shuttle it into the Expression pane

The name of the page title comes from a resource as defined in the
UIResources.properties file.

2. Add a header that will appear in the browser title when you run the page, as follows: In
the Structure window, select afh:head. Set the Title property to
#{res['srdemo.browserTitle']}.

3. Select the ADF Faces Core page in the Component palette. Scroll through the list to find
PanelBox and drag it into the panelPage. In the Visual Editor it should display under the
title. The panelBox will define the content area for the page.

In the next few steps, you create the data components, resize the field display, and include
two command buttons.

4. Now add the data to the page. Select the Data Control palette and expand
SRPublicFacadeLocal. Scroll down to select
findServiceRequestById(Integer) ServiceRequests and drag it to the page, inside the
panelBox.

5. In the pop-up menu, select Forms ADF Form. In the Edit Form Fields dialog box that
appears, reorder the columns as follows: svrId, requestDate, status, assignedDate, and
problemDescription. Do not close the dialog box yet.

6. Still in the dialog box, click the Component to Use field to the right of svrId, and from
the drop-down list, select ADF Output Text w/Label. Do the same for the requestDate
field. Click OK.

7. The Action Binding Editor appears. In the dialog box, leave findSvrId empty for now;
you will assign a page parameter to it later. Click OK.

The form is displayed on the page. In the next steps, you add details to it:

8. Select the problemDescription field and, in the Property Inspector, set the Rows
property to 4 to make this a multiline item so that a user has space to provide a textual
description of the appliance problem.

Creating Lookups to Retrieve the createdBy and assignedTo Names

10-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

9. Expose the PanelForm facets node. Select panelButtonBar in the ADF Faces Core
Component palette, and drag it to the footer facet of the PanelForm in the Structure
window

You now create Save and Cancel buttons for the page:

10. Drag two CommandButtons from the ADF Faces Core Component palette to the
panelButtonBar. In the Property Inspector, set their properties to the values in the
following table:

ID Text
cancelButton #{res['srdemo.cancel']}

commitButton #{res['srdemo.save']}

At this point, your page should look something like the following screenshot:

Creating Lookups to Retrieve the createdBy and
assignedTo Names

The createdBy and assignedTo attributes enable a user to retrieve the name of the individual
who created a service request or the individual to whom a service request is assigned.

The createdBy and assignedTo attributes of the ServiceRequest object are actually child-object
accessors. In the following steps, you bind the relevant name attributes from these child objects
into the page.

Creating Lookups to Retrieve the createdBy and assignedTo Names

Developing an Edit Page 10-7

1. The first component contains the first and last names of the user who created the service
request. Select PanelLabelAndMessage in the ADF Faces Core Component palette, and
in the Visual Editor, drag it to the page beneath the svrId field.

2. The second component contains the first and last names of the technician to whom the
service request is assigned. Drag and drop a second PanelLabelAndMessage component
beneath the requestDate field.

3. Drop a PanelHorizontal inside each af:panelLabelAndMessage component. This ensures
that the firstName and lastName attributes display side by side instead of vertically.

In the next few steps, you add and bind data components for the first and last name of
the created by and assigned to users to the user interface:

4. In the Data Control palette, expand the
findServiceRequestById ServiceRequests createdBy node, and select the firstName
attribute. Drag it to the first of the panelHorizontals, and drop it as ADF Output Text.

5. Repeat the previous step with the lastName attribute, adding it to the same
af:panelHorizontal.

6. Select an ObjectSpacer in the ADF Faces Core Component palette. Drag and drop it onto
the PanelHorizontal separator facet of the Structure window (expand the
PanelHorizontal facets node if necessary). Set its Width property to 4.

7. In the Data Control palette, expand the
findServiceRequestById ServiceRequests assignedTo node, and select the
firstName attribute. Drag it into the second of the panelHorizontals, and drop it as ADF
Output Text.

8. Repeat the previous step with the lastName attribute, placing it in the af:panelHorizontal
component..

9. Add an ObjectSpacer to the separator facet of this PanelHorizontal as you did earlier.
Again, set its width to 4.

10. Select the first panelLabelAndMessage component. Set the Label property to
#{res['sredit.createdBy.label']}.

11. Set the Label property of the second panelLabelAndMessage component to
#{res['sredit.assignedTo.label']}.

12. Save the page. At this point, the page should look something like the following
screenshot:

Wiring Up the Input Service Request ID Parameter

10-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wiring Up the Input Service Request ID Parameter
In the following steps, identify and wire the service request that the SREdit page should display
when a user enters the page.

1. Right-click in the Visual Editor and, from the context menu, choose Go to Page
Definition.

2. In the Structure window, expand the bindings node, and then expand the
findServiceRequestById node. Double-click findSvrId, which represents the argument
for the method.

3. In the NamedData Properties dialog box, click […] to go to the Advanced Editor. In the
Variables list, expand the JSF Managed Beans node and then the userState node, and
scroll down to find currentSvrId.

4. Select currentSvrId and click the > arrow to shuttle it to the Expression box. Click OK,
and then click OK again. Save the page definition file.

Adding a Drop-down List for the status Attribute

Developing an Edit Page 10-9

Adding a Drop-down List for the status Attribute
The status field should offer the user a drop-down list of the different statuses available. Perform
the following steps to convert the current status field to a list:

1. Click the SREdit.jspz tab and, in the Visual Editor, delete from the page both the label
and input text for the existing status field.

2. In the Data Control palette, expand findServiceRequestById ServiceRequests, and
select the status attribute. Drag it to its old position in the page, and drop it as Single
Selections ADF Select One Choice.

The selectOneChoice component creates a menu-style component that enables the user to
select a single value from a list of items.

3. In the List Binding Editor, select the Fixed List option. Set the Base Data Source Attribute
to status.

4. In the Set of Values box, enter the following values, each on a new line: Open, Pending,
and Closed. These values are displayed at run time.

5. Set the "No Selection" Item field to Selection Required. Click OK.

6. In the Property Inspector, for the new af:selectOneChoice, set the ID property of the new

list component to statusSelection.

7. Save the page.

Wiring Up the Cancel Button

10-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Wiring Up the Cancel Button
When a user clicks the Cancel button on the Edit screen, you discard the changes by not “saving”
them. You then need to take the user back to wherever they came from. You do this by passing a
parameter from the calling page. In addition, you need to ensure that if the user returns to the
page to view the same service request, the query is reexecuted. Otherwise, the previous state of
edit will be displayed.

1. Right-click in the Visual Editor, and choose Go to Page Definition from the context
menu.

2. In the Structure window, right-click the executables node, and choose Insert inside
executables-->invokeAction

3. In the Insert invokeAction dialog box, type explicitRefresh as the id, and in the Binds
field choose findServiceRequestById from the drop-down list. Do not exit the dialog
box.

4. Click the Advanced Properties tab, and confirm that the Refresh property is set to
IfNeeded. This controls whether a refresh should take place.

5. In the RefreshCondition property, click […]. Then expand the JSF Managed Beans node
and the userState node in the Variables pane.

6. Locate and select refresh, and then click > to shuttle it to the Expression pane. Click OK
to close the editor, and then click OK again to exit the dialog box.

7. Save the page definition file.

8. Set an actionListener to fire when the user clicks the Cancel button, and trigger the
refresh.
On the SREdit page, right-click the Cancel button and, from the context menu, choose
Insert inside af:commandButton - #{res['srdemo.cancel']} ADF Faces
Core SetActionListener.

9. In the Insert SetActionListener dialog box, type #{true}in the From* field and
#{userState.refresh} in the To* field. When fired, this listener populates the user state
refresh property with the value of #{true}. Click OK.

Wiring Up the Save Button
The edited record needs to be saved to the database. The following steps illustrate how to do this,
using the generic mergeEntity method on the service facade.

1. In the Data Control palette, locate the mergeEntity(Object) method. Drag it to the
Visual Editor and drop it on the Save button that you created earlier in this chapter. From
the pop-up menu, choose Bind Existing CommandButton.

2. In the Action Binding Editor, click in the Value field, and then click the […] that
appears. In the Variables dialog box, expand the ADF Bindings node and then the
bindings node. Locate and expand the findServiceRequestById Iter node and then the
currentRow node. Select dataProvider and shuttle it across to the Expression pane. Click
OK, and then click OK again.

Disabling Input Fields for Closed Service Requests

Developing an Edit Page 10-11

3. In the Property Inspector, for the Save button, set the Action property to

#{userState.retrieveReturnNavigationRule}. This method determines which page
to return to after the changes have been saved.

4. As in the previous section, set an actionListener to fire when the Save button is clicked,
and trigger a refresh. Right-click the Save button and, from the context menu, choose
Insert inside af:commandButton - #{res['srdemo.save']} ADF Faces
Core SetActionListener.

5. In the Insert SetActionListener dialog box, type #{true}in the From* field and
#{userState.refresh} in the To* field. Click OK.

6. Save the page.

Disabling Input Fields for Closed Service Requests
When a service request has a status of “closed,” the problemDescription and assignedDate fields
need to be disabled. The following steps show you how to do this:

1. Select the status list, and set the AutoSubmit and Immediate properties to true.

Setting AutoSubmit to true for the status attribute causes a partial submit of the form
when the status attribute is updated.

2. For both the problemDescription and assignedDate fields, set the Disabled property to
#{backing_app_staff_SREdit.statusSelection.value=='2'}.

To do this, click in the Disabled property in the Property Inspector, and then click the
Bind to Data icon in the toolbar. In the Disabled dialog box, expand the JSF Managed
Beans node and then the backing_app_staff_SREdit node. Scroll down to locate
statusSelection and expand it. Scroll through the list to select value. Shuttle it across to
the Expression pane. In the Expression pane, edit the expression to add the value 2. Click
OK.

The enumeration list that you created in the List Binding Editor is zero index based, and
Closed is the third entry; the value is therefore 2.

3. Set the PartialTriggers property for the two fields to statusSelection. As you saw
earlier, this means that a change in the value of the status attribute causes the field to
refresh.

4. Save the page.

Running the Page
The SREdit page receives the record to edit from the SRList page. Run the SRList page and, when
prompted, use sking as the username and welcome as the password. Select the service request

Changing the Application Look and Feel

10-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

for the id of 111 and click the Edit button. The SREdit page is displayed with the record ready for
editing. The page should look something like the following screenshot.

1. On the page, test the drop-down list in the Status field.

2. Check that the date picker field works correctly.

3. Check that when you set the status of the request to Closed, the Problem Description and
Assigned On fields are disabled.

4. Click the Save button and make sure that you return to the List page.

5. Make a change and then click Cancel. The change should be undone.

Changing the Application Look and Feel
You can change the look and feel of an application by changing its “skin.” A skin is a global style
sheet that needs to be set in only one place for the entire application. The application developer
does not need to add any code, and any changes to the skin are picked up at run time. Skins are
based on the Cascading Style Sheets specification.

By default, ADF Faces applications use the Oracle skin, and so this is the look and feel that has
been applied to the pages you have created in the SRDemo application. ADF Faces also provides
two other skins, the Minimal skin (which provides some basic formatting) and the Simple skin
(which provides almost no special formatting). Alternatively, you can create a custom skin
specifically for your application; to find out how to do this, refer to the JDeveloper Help pages.

Perform the following steps to apply the Minimal skin to your SRDemo application:

Summary

Developing an Edit Page 10-13

1. In the Navigator, locate the UserInterface WEB-INF adf-faces-config.xml file and
double-click it to open it.

2. Change the <skin-family> value from <skin-family>oracle</skin-family> to <skin-
family>minimal</skin-family>.

3. Save the file.

4. To see the new look and feel, run the application as bernst. Open the SRList page.

Notice that the components in the Visual Editor also display the new style.

5. Run the SRList page. The page with the Minimal skin applied should look like the
screenshot below. Notice that the buttons are squared off, the menu bar is simplified, and
the labels are colored green.

Summary
In this chapter, you created an Edit page that enables managers and technicians to modify service
requests. To accomplish this, you performed the following key tasks:

 Created a framework page based on the template page that you defined in Chapter 4

 Added some UI elements to the page to display the service request information

 Created lookups for the createdBy and assignedTo names

 Added a drop-down list for the status attribute

 Defined specific behaviors for the Save and Cancel buttons

 Disabled some input fields for requests with a status of Closed

 Changed the appearance of the application by applying a different skin

Deploying the Application to Oracle Application Server 10g 11-1

11
Deploying the Application to Oracle

Application Server 10g

In this chapter, you use JDeveloper to create a deployable J2EE Web archive that contains your
application and a few required deployment descriptors. You deploy the application to Oracle
Application Server 10g using the JDeveloper deployment mechanism. You can then test the
application and view its performance by using Oracle Enterprise Manager.

This chapter contains the following sections:

 Introduction

 Creating a Connection to Oracle Application Server 10g

 Starting an OracleAS Containers for J2EE (OC4J) Instance

 Creating a Connection to OC4J

 Preparing for Deployment

 Creating Deployment Profiles

 Deploying the Application

 Testing the Application

 Starting Enterprise Manager

 Using Enterprise Manager to Explore the Application Server

 Summary

Introduction

11-2 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Introduction
Deploying a J2EE application is the last step in developing an application. After the application is
completed and works as planned, the next step is to deploy it to a location where customers can
use it.

JDeveloper has the built-in capability to deploy applications to a number of application servers.
In this chapter, you deploy your application to Oracle Application Server 10g.

You perform the following key tasks in this chapter:

 Create a connection to an existing Oracle Application Server 10g: JDeveloper needs to
establish a connection to the target application server so it can create the correct
deployment profiles and push the completed files to the server.

 Create deployment profiles: These profiles manage the content and type of files required
for deployment to the target application server.

 Start Enterprise Manager (EM): With EM, you can monitor or even redeploy an
application.

Note: If you do not have access to Oracle Application Server 10g, you will start an OC4J
instance (this is an instance of OC4J that is not run from within JDeveloper).

 Deploy the application: After the profiles are created, you can deploy the application
from within JDeveloper.

 Test the deployment: When the application is deployed, you can run it from a Web
browser to verify that the application works as expected.

 Use Enterprise Manager to explore the application server: Enterprise Manager provides
a detailed view of all the components of the application server. You can monitor and
even change application parameters and fine-tune the performance of the application
server.

Note: If you did not successfully complete Chapter 10, you can use the end-of-
chapter application that is part of the tutorial setup.

1. Create a subdirectory named Chapter11 to hold the starter application. If
you used the default settings, it should be in
<jdev_install>\jdev\mywork\Chapter11.

2. Unzip <tutorial_setup>\starterApplications\SRDemo-
EndOfChapter10.zip into this new directory. Using a new separate
directory keeps this starter application and your previous work separate.

3. In JDeveloper, close your version of the SRDemo application workspace.

4. Select File > Open, and then select
<jdev_install>\jdev\mywork\Chapter11\SRDemo\SRDemo.jws. This
opens the starter application for this chapter.

You can now continue with this tutorial using an application that implements all of
the steps from Chapter 10.

Creating a Connection to Oracle Application Server 10g

Deploying the Application to Oracle Application Server 10g 11-3

Creating a Connection to Oracle Application Server 10g
JDeveloper supports deploying your applications to a variety of production application servers,
via application sever connections. The first step in using JDeveloper to deploy an application is to
create a connection to the target application server.

1. Click the Connections tab in JDeveloper.

If the Connections tab is not visible, you can select View Connections Manager from
the JDeveloper menu bar. (You can also press [Ctrl] + Shift + [O].)

2. Right-click Application Server in the Connections window and select New Application
Server Connection from the context menu.

3. Enter the following values in the Create Application Server Connection Wizard:

4. On the last page of the wizard, click Test Connection. You should see a success message.

5. When the test is successful, click Finish to create the connection.

Starting an OracleAS Containers for J2EE (OC4J) Instance
JDeveloper includes an installation of OC4J and a JDK. In this section, you navigate to the
directory where the oc4j.jar file is stored and start OC4J using the supplied version of the JDK.

1. Open a Windows command window: Click Start on the Windows Start bar and select

Field Value
Connection Name OracleAS10g

Connection Type Oracle Application Server 10g 10.1.3

Username oc4jadmin

Password Enter the administrator password for your instance.
Host Name localhost

Note: If you do not have access to Oracle Application Server 10g, follow
the next sections to create an instance of OC4J and a JDeveloper
connection.

Creating a Connection to OC4J

11-4 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

Run.

2. Enter cmd in the dialog box and click OK.

3. In the command window, change the current directory to
<jdev_install>\j2ee\home.

4. Use the supplied JDK to start OC4J by entering the following command:
<jdev_install>\jdk\bin\java -jar oc4j.jar

5. If this is the first time you have run OC4J, it automatically installs and prompts you for a

password for the administrator account. The administrator account is oc4jadmin. Enter
the password admin. The installation asks you to confirm the password by entering it
twice.

6. When the install and startup are complete, you will see the following message:
Oracle Containers for J2EE 10g <10.1.3.0.0> initialized

OC4J is now running and ready for use.

Creating a Connection to OC4J
The general steps to create a connection to any application server are basically the same. The
differences come from the specific connection requirements of the server. The differences
between creating a connection to Oracle Application Server 10g are fundamentally the same as
creating a connection to OC4J. There are only a few differences in the arguments you supply.

1. Click the Connections tab in JDeveloper.

If the Connections tab is not visible, you can select View Connections Manager from

Starting Enterprise Manager

Deploying the Application to Oracle Application Server 10g 11-5

the JDeveloper menu bar. (You can also press [Ctrl] + [Shift] + [O].)

2. Right-click Application Server in the Connections window and select New Application
Server Connection from the context menu.

3. Enter the following values in the Create Application Server Connection Wizard:

4. On the last page of the wizard, click Test Connection. You should see a success message.

5. When the test is successful, click Finish to create the connection.

Starting Enterprise Manager
Oracle Application Server 10g comes with a browser-based Enterprise Manager (EM). Through
this EM interface, you can monitor activities and applications deployed to the application server.
After the application server is running, you can connect to EM using a browser. The next few
steps open this interface and briefly explore the application server.

The stand-alone OC4J that comes with JDeveloper also includes Enterprise Manager.

1. Open a browser of your choice (Firefox, Internet Explorer, or another browser) and enter
the following address: http://127.0.0.1:7777/em. If you are using stand-alone OC4J
the address is : http://127.0.0.1:8888/em

2. Enterprise Manager 10g prompts you for a username and password. The username is
oc4jadmin with a password of admin (or your administrator password). Click Login to
enter EM.

Field Value
Connection Name OC4J

Connection Type Standalone OC4J 10g 10.1.3

Username oc4jadmin

Password admin

Host Name localhost

Preparing for Deployment

11-6 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

3. After successful login, the browser looks like the following:

You can now explore applications, Web services, and other components of Oracle
Application Server 10g.

Preparing for Deployment
To keep all the elements of your application organized and cleanly separated, you will create a
project to hold all of the deployment components for your application. This project will hold the
deployment profiles and the deployment files (.ear, .war, .jar).

1. In the Applications Navigator, right-click SRDemo and select New Project from the
context menu.

2. Select Empty Project in the New Gallery and click OK.

3. Name the project Deployment.

You now have a project to use to manage the deployment for your application.

When you were creating the Service Request application, you created users and roles in a file
named SRDemo-jazn-data.xml. That is the default name that JDeveloper uses to segregate files
by application. It places the files in a top-level directory by default.

That is useful for testing within the JDeveloper development environment. However, those
names and the directory structure are not directly deployable to a J2EE server. A J2EE server has
some very specific requirements for names and locations of files that are to be deployed. In the
next few steps, you move the files and rename them to standard J2EE deployment names.

1. Open Windows Explorer (or equivalent program on your operating system) and navigate
to the root directory of your application.

Preparing for Deployment

Deploying the Application to Oracle Application Server 10g 11-7

2. Expand the Deployment node and create a subdirectory structure such as the following:
..\SRDemo\Deployment\src\META-INF

3. This is the structure required by J2EE application servers for the jazn-data.xml and
data-sources.xml files. Create a directory.

If you’re using Windows, you can select the parent in the left window, right-click in the
right window, and then select New folder from the context menu.

4. Copy the SRDemo-jazn-data.xml file to the new directory.

5. Rename the file to remove SRDemo from the name. The resulting file name should be
jazn-data.xml. The directory structure should now look like the following screenshot:

Creating Deployment Profiles

11-8 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

6. Click the Refresh button in the Applications Navigator in
JDeveloper.

7. The project structure should now appear as follows:

The file names and directory structure are now ready for deployment. The last thing you need to
do before deployment is to make sure the deployment profiles use the TopLink transaction
control. There are a couple of parameters at the session level that need to point to the correct
transaction class.

In the next few steps, you modify the sessions.xml file to use the correct transaction
management class.

1. In the Applications Navigator, select DataModel Application Sources TopLink.

2. Select sessions.xml. In the Structure pane, double-click SRDemoSession.

3. On the General page, select the External Transaction Controller check box in Options.

4. Enter the following transaction class:
oracle.toplink.transaction.oc4j.Oc4jTransactionController

5. Click the Login tab, and then click the Options tab.

6. Set the External Connection Pool to True.

7. Set the External Transaction Controller to True.

8. Select Tools | Preferences from the JDeveloper menu.

9. Click Deployment.

10. Clear the Bundle Default data-sources.xml During Deployment option.

11. Click OK.

The application is now ready to deploy.

Creating Deployment Profiles
Deployment profiles are project components that manage the deployment of an application. A

Creating Deployment Profiles

Deploying the Application to Oracle Application Server 10g 11-9

deployment profile lists the source files, deployment descriptors (as needed), and other auxiliary
files that will be included in a deployment package.

There are three parts of the deployment package for the service request application: The Model
project (.jar), the UserInterface project (.war), and the Deployment project (.ear.) files. You
create deployment profiles for each of the three parts in this section of the tutorial.

The first deployment profile you create is for the Model project. The contents of this project are
primarily the Java classes that make up the data model portion of the application. The
deployment type for this project is an EJB JAR (Java Archive) file.

1. Right-click the Model project in the Applications Navigator and select New from the
context menu.

2. Select Deployment Profiles EJB JAR File in the New Gallery and click OK.

3. Click OK to accept the default profile name.

4. Click OK to accept the default values in the EJB JAR Deployment Profile Properties
dialog box.

5. Save your work.

6. The Applications Navigator should now look like the following screenshot:

Creating the UserInterface Deployment Profile
You now create a deployment profile for the UserInterface project. This project is where you
created the user interface components of the application. The deployment file for this project
is a .war file (Web Archive, for the Web components).

1. Right-click the UserInterface project in the Applications Navigator, and select New from
the context menu.

2. Select Deployment Profiles WAR File in the New Gallery and click OK.

3. Click OK to accept the default profile name.

Creating Deployment Profiles

11-10 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

4. Change the Web Application’s Context Root to SRDemo. This becomes part of the URL
customers use to access the application.

5. Click OK to accept the default values in the WAR Deployment Profile Properties dialog
box.

6. Save your work.

7. The Applications Navigator should now look like the following screenshot:

Creating the Archives

Now that you have created the .jar and.war (Web Archive) files, you can assemble the
application into a deployable package.

In the assembly part of deployment, you create a deployment profile that includes any .jar
and .war files you need for your application, along with other server configuration files that
may be required. As you have already seen, a few of those files are the data-sources.xml
and jazn-data.xml files.

1. Right-click the Deployment project in the Applications Navigator and select New.

2. Select Deployment Profiles EAR File in the New Gallery and click OK.

3. Change the profile name to SRDemoApplication and click OK.

4. Click the Application Assembly category.

5. Select the following J2EE modules to include in the .ear file:

Creating a Connection Pool and Data Source

Deploying the Application to Oracle Application Server 10g 11-11

UserInterface.jpr webapp1.deploy

Model.jpr ejb1.deploy

6. Click OK to accept the other defaults.

You have now created the deployment profiles you need to successfully deploy your application
to a J2EE server. In the next section, you deploy and test the application.

Creating a Connection Pool and Data Source
Applications deployed to Oracle Application Server 10g use a data source and connection pool to
manage database access. When you are developing the application, JDeveloper creates a data-
sources.xml file for you. It uses that file during development and internal testing. When it
comes time to deploy the application, you will create a Data Source directly on the application
server.

In this section, you create a connect pool and a data source for your application. The name of the
data source used by your application is SRDemoDS. The data source that you create using EM
must be named the same as the data source that you used during development.

1. Open a browser and connect to Enterprise Manager (EM), if you haven't already done so.

2. In EM, click home under the Application Servers.

3. Click the Administration link.

4. Under Services, click Go to Task on the JDBC Resources line, which will show existing
data sources and connection pools.

Creating a Connection Pool and Data Source

11-12 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

5. Click the Create button in the Connection Pools table.

6. Use the following information to create a connection pool:

7. Click Finish to create the connection pool.

8. Click Test Connection, which will take you to a test page. Click Test. You should see the
following message in the Confirmation area at the top of the page.
Connection to SRDemoDSPool established successfully.

Creating the Connection Pool
Next, you create a data source that uses the SRDemoDSPool connection pool.

1. Click the Create button in the Data Sources table.

2. Use the following information to create the data source:

Field Value
Application Default

Connection Pool
Type

New Connection Pool

Name SRDemoDSPool

Connection Factory oracle.jdbc.pool.OracleDataSource
(the default value)

JDBC URL jdbc:oracle:thin:@//localhost:1521/orcl
(your database)

Credentials:
Username

srdemo

Credentials:
Cleartext Password

oracle

Field Value
Application Default

Data Source Type Managed Data Source

Name SRDemoDS

JNDI Location Jdbc/SRDemoDS

Transaction Level Global & Local Transactions (default)

Connection Pool SRDemoDSPool

Login Timeout 0
(default)

Deploying the Application

Deploying the Application to Oracle Application Server 10g 11-13

3. Click Finish.

4. Click Test Connection.

5. On the Test Connection page, click the Test button.

6. You should see the following message:
Connection to "SRDemoDS" established successfully.

Deploying the Application
JDeveloper provides a one-click option to deploy an application to an application server. After
you have assembled the application into an EAR file, you can right-click the deployment profile
and select the target application server.

1. Right-click the SRDemoApplication.deploy deployment profile.

2. Select Deploy to OracleAS10g from the context menu. Remember that OracleAS10g is
the name of the connection to Oracle Application Server 10g you created earlier in this
tutorial.

During deployment, JDeveloper re-creates the .jar and .war files and then assembles
the .ear file. After the file is assembled, JDeveloper deploys the file and unpacks it in a
directory on the application server, depending on the target environment.

3. Click OK to accept the Application Configuration and begin the deployment.

4. When the deployment is complete, the following messages appear in the JDeveloper log
window:

Testing the Application
You have now deployed the application to a stand-alone instance of OC4J. You can test the
application with a Web browser using the context root that you specified for the application.

1. Open a Web browser.

2. Enter the URL http://localhost:7777/SRDemo/SRList.jspx.

Note: If you did not have access to Oracle Application Server 10g and
used OC4J, use the name of the connection you created for OC4J, which
should be OC4J.

Note: If you are using OC4J, the URL is the same except for the port
number. Substitute 8888 for 7777.

Using Enterprise Manager to Explore the Application Server

11-14 Oracle Application Development Framework Tutorial 10g Release 3 (10.1.3)

3. This directs you to the logon page of the application. Use the following as login
credentials:

Field Value
Username sking

Password welcome

4. When you have explored the application, leave the browser open.

Using Enterprise Manager to Explore the Application Server
OC4J is delivered with a Web-based Enterprise Manager (EM) that you can use to monitor and
manage deployed applications. In this final section, you use EM to explore your application and
the application server.

1. Open a second Web browser.

2. Enter the URL http://localhost:7777/em (for OC4J, use 8888).

3. Use the following credentials to log in to EM:

Field Value
Username oc4jadmin

Password admin

4. After you log in, you are directed to the EM home page, which should look like the
following screenshot:

Summary

Deploying the Application to Oracle Application Server 10g 11-15

You can explore a number of aspects of the application using EM, such as the following:

5. Click the Applications tab, and then click SRDemoApplication to view specifics about
the application you just deployed.

6. Click the Performance link to see graphs of application performance.

7. Click the Administration link to see all of the deployment aspects of the application,
including details of the JAZN security implementation.

Summary
In this chapter, you saw how to use JDeveloper to deploy an application to OC4J. JDeveloper
enables you to easily deploy an application to a number of different application servers by using
deployment profiles and application server connections.

Enterprise Manager is an easy-to-use and powerful interface for the management of Oracle
Application Server and deployed applications.

Here are the key tasks that you performed in this chapter:

 Created a connection to an existing Oracle Application Server 10g

 Created deployment profiles

 Started Enterprise Manager (EM)

 Deployed the application

 Tested the deployment

 Used Enterprise Manager to explore the application server

